
Agilent N4901 Serial BERT

Programming Guide
S1

Important Notice

© Agilent Technologies, Inc. 2004

Revision

Revision 2.0, May 2004

Printed in Germany

Agilent Technologies
Herrenberger Straße 130
D-71034 Böblingen
Germany

Authors: t3 medien GmbH

Warranty

The material contained in this document is
provided "as is," and is subject to being changed,
without notice, in future editions. Further, to the
maximum extent permitted by applicable law,
Agilent disclaims all warranties, either express or
implied, with regard to this manual and any
information contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a particular
purpose. Agilent shall not be liable for errors or
for incidental or consequential damages in
connection with the furnishing, use, or
performance of this document or of any
information contained herein. Should Agilent and
the user have a separate written agreement with
warranty terms covering the material in this
document that conflict with these terms, the
warranty terms in the separate agreement shall
control.

Technology Licenses

The hardware and/or software described in this
document are furnished under a license and may
be used or copied only in accordance with the
terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S.
Government prime contract or subcontract,
Software is delivered and licensed as
"Commercial computer software" as defined in
DFAR 252.227-7014 (June 1995), or as a
"commercial item" as defined in FAR 2.101(a) or
as "Restricted computer software" as defined in
FAR 52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is subject to
Agilent Technologies' standard commercial
license terms, and non-DOD Departments and
Agencies of the U.S. Government will receive no
greater than Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Government
users will receive no greater than Limited Rights
as defined in FAR 52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls
attention to an operating procedure, practice, or
the like that, if not correctly performed or adhered
to, could result in damage to the product or loss
of important data. Do not proceed beyond a
CAUTION notice until the indicated conditions
are fully understood and met.

WARNING/DANGER

A WARNING notice denotes a hazard. It calls
attention to an operating procedure, practice, or
the like that, if not correctly performed or adhered
to, could result in personal injury or death. Do not
proceed beyond a WARNING notice until the
indicated conditions are fully understood and
met.

Trademarks

Windows NT ® and MS Windows ® are U.S.
registered trademarks of Microsoft Corporation.
2 Agilent Serial BERT, Programming Guide, May 2004

Contents
Contents

Programming Basics 7

Before You Begin 8

Instrument Behavior 10

Operation Modes 11

A Typical Serial BERT Program 13

Prerequisites 13

Initializing the Connection to the Serial BERT 14

Initializing the Connection – Procedures 14

Working with the IVI-COM Objects 15

Working with the IVI-COM Objects – Procedures 15

Changing Instrument Parameters 16

Recommended Programming Techniques 19

Controlling the Output Levels 19

How Serial BERT Controls the Output Levels 19

Allowing Serial BERT to Settle 20

Determining if Conditions have Settled 21

Reading the Serial BERT’s Status 23

How Serial BERT Uses Status Registers 23

Serial BERT Register Model 25

Using Error Location Capture 31

Using Error Location Capture – Procedures 35

Using Interrupts 38

Using Interrupts – Procedures 39

Working With User Patterns 40

Working With User Patterns – Procedures 44

SCPI Command Language 51

Important Points about SCPI 54

Sending Commands to the Serial BERT 58
Agilent Serial BERT, Programming Guide, May 2004 3

Contents
SCPI Command Reference 61

Serial BERT Subsystems 61

IEEE Commands 63

Mandatory Commands 63

Optional Commands 68

SOURce[1] Subsystem 70

[SOURce[1]]:PATTern Subnode 71

[SOURce[1]]:PATTern:APCHange Subnode 77

[SOURce[1]]:PATTern:UFILe Subnode 80

[SOURce[1]]:PATTern:UPATTern Subnode 85

[SOURce[1]]:VOLTage Subnode 89

OUTPut[1] Subsystem 93

SOURce9 Subsystem 96

SOURce2 Subsystem 97

OUTPut2 Subsystem 100

SOURce3 Subsystem 103

SENSe6 Subsystem 108

INPut[1] Subsystem 110

SENSe[1] Subsystem 113

SENSe[1]:BLOCk Subnode 118

SENSe[1]:ELOCation Subnode 121

SENSe[1]:EYE Subnode 123

SENSe[1]:GATE Subnode 129

SENSe[1]:PATTern Subnode 133

SENSe[1]:PATTern:UPATtern Subnode 137

SENSe[1]:PATTern:UFILe Subnode 142

SENSe[1]:VOLTage Subnode 146

INPut2 Subsystem 148

SENSe2 Subsystem 149

SOURce7 Subsystem 154

[P]FETCh Subsystem 155

[P]FETCh[:SENSe[1]] Subnode 157

[P]FETCh[:SENSe[1]]:BURSt Subnode 159

[P]FETCh[:SENSe[1]]:ECOunt Subnode 162

[P]FETCh[:SENSe[1]]:EFINterval Subnode 163
4 Agilent Serial BERT, Programming Guide, May 2004

Contents
[P]FETCh[:SENSe[1]]:EINTerval Subnode 165

[P]FETCh[:SENSe[1]]:ERATio Subnode 166

[P]FETCh[:SENSe[1]]:G821 Subnode 168

STATus Subsystem 170

CLOSs Subnode 171

STATus:OPERation Subnode 173

STATus:QUEStionable Subnode 176

SYSTem Subsystem 178

TEST Subsystem 181

Appendix 183
Agilent Serial BERT, Programming Guide, May 2004 5

Contents
6 Agilent Serial BERT, Programming Guide, May 2004

Programming Basics

This document provides the information you need for programming

the Agilent N4901A/2A Serial BERT using the Agilent VISA I/O
libraries. Familiarity with the Agilent VISA I/O libraries is
instrumental in understanding remote programming of the
Serial BERT.

See the user documentation delivered with the Agilent VISA I/O
libraries for information on how to use them.

CAUTION The following pattern generator ports must be terminated with 50 Ω if
they are not connected:

• Data Out

• Data Out

• Clock Out

• Clock Out

The following procedure is recommended when setting up a test:

1 If your DUT can handle 0 V, disable the outputs.

IVI-COM: IAgilentN490xPGGlobal.OutputsEnable = False

SCPI: OUTPut[1]:CENTer DISConnect

The pattern generator’s Data Out and Clock Out outputs are set to
0 V.

2 Connect the DUT as necessary.

3 Terminate any non-connected Data Out and Clock Out ports
(normal and complementary).

4 If the outputs are disabled, reenable them.

IVI-COM: IAgilentN490xPGGlobal.OutputsEnable = True

SCPI: OUTPut[1]:CENTer CONNect
Agilent Serial BERT, Programming Guide, May 2004 7

Programming Basics Before You Begin
Before You Begin

This section provides background information that you need before
you start with remote programming. It contains the following subjects:

• “Communication Overview” on page 8

• “Connecting to the Serial BERT” on page 9

Communication Overview
Communication with the Serial BERT is based on a host-client
protocol. The server is the Serial BERT itself, the host is the remote
client. The host requests the server to carry out specific actions; the
Serial BERT carries out the actions and returns the results (if a query
was sent).

Figure 1 Serial BERT Remote Communication

The Serial BERT uses either a SCPI interface or IVI-COM interface for
for communicating with the outside world. See “A Typical
Serial BERT Program” on page 13 for information on getting started
with remote programming for the Serial BERT.

The Serial BERT’s advanced measurements can only be accessed over
the LAN interface. See the Measurement Software Programming
Guide for more information on programming the measurements.

Remote Host Serial BERTLAN|GPIB|USB
IVI-COM|SCPI

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amp litude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results
8 Agilent Serial BERT, Programming Guide, May 2004

Before You Begin Programming Basics
Connecting to the Serial BERT

NOTE To communicate with the Serial BERT from a remote machine, the
Agilent VISA I/O libraries must be installed on this machine.

The following descriptions only provide you with the information you
need from the Serial BERT. For complete instructions on how to
establish connections to the Serial BERT, refer to the user
documentation delivered with the VISA I/O libraries.

The VISA I/O libraries offer the following possibilities for remotely
connecting to and controlling the Serial BERT:

LAN The Serial BERT’s network settings are managed by the operating
system. You can use the IPCONFIG command in the command window to
get the network settings.

The steps for setting up the network connection are OS-dependent
(Serial BERT’s OS is Windows XP). Contact your network
administrator if you need help in defining the network settings.

GPIB To connect to the Serial BERT via GPIB, you have to have the
Serial BERT’s GPIB address.

The address is displayed on the user interface. The default address is
14. See the online Help for details on how to set the GPIB address.

NOTE When setting the GPIB address, it is recommended that you do not use
the GPIB address 21. This address is reserved for GPIB controllers.

USB The Serial BERT has a USB port on the rear of the instrument that you
can use to connect it to a PC. This is the non-flat USB port below the
GPIB port.

To connect to the Serial BERT via USB, you need the Serial BERT’s
USB ID. You can either use the full VISA resource string or assign an
alias. See the Agilent VISA I/O libraries documentation for details.
Agilent Serial BERT, Programming Guide, May 2004 9

Programming Basics Instrument Behavior
Instrument Behavior

The Serial BERT behaves as follows when it is turned on (or after a
power-cycle):

Instrument Mode At power on, the Serial BERT will return to the same mode as it was
powered down. Normally, once it has booted, the Serial BERT is ready
for either front panel operation or remote operation.

Registers and Filters At power-on, the state of the registers and filters are:

• Normal operation

The initial state of the registers and transition filters will be saved
in the event of a power failure.

• Initial power-on

All registers and filters are disabled except the PON, CME and EXE
bits of the Standard Event Status Register and its summary bit in
the Status Byte.

The transition filters will be set to allow all conditions and events to
pass.

The event registers and the error queue are cleared at each and every
power-up.

Overheat Protection
The Serial BERT protects itself from damage by overheating by
shutting itself down in such cases.

If the temperature of the pattern generator or error detector generator
exceeds a certain threshold, the OVERHEAT bit in the Operation
register is set.

There are two thresholds: caution and warning. These both set the
same bit: you cannot programmatically get the threshold.

The caution threshold is not critical. You have enough time to save
your current settings and gracefully shut down the instrument.

The warning threshold is critical. If this threshold is reached, the
instrument will immediately shut itself down.
10 Agilent Serial BERT, Programming Guide, May 2004

Instrument Behavior Programming Basics
Overtemperature can be programmatically detected by querying the
Status byte (*STB). In case of overheating by either the error detector
or pattern generator, the Operation bit (bit 7) in the Status byte will
high, as will the OVERHEAT bit in the Operation register. See “How
Serial BERT Uses Status Registers” on page 23 for details on reading
the status registers.

You can identify whether the error detector or pattern generator is
overheating by running a self-test on both devices. To run a self-test:

• IVI-COM: IIviDriverUtility.SelfTest

• SCPI: TEST:EXECute?

See also the Serial BERT User Guide (or online Help) for details.

Operation Modes

The Serial BERT can be operated in one of two modes: local or remote.

Local Mode In local mode, all the front panel controls are responsive and control
the instrument.

Remote Mode In remote mode, the front panel controls are inoperative and the
instrument is controlled by the client. The front panel display reflects
the remote programming commands received.

The Serial BERT automatically enters remote mode when a command
has been received from the client. This is indicated at the top of the
front panel (the RMT status light).

Returning to Local Mode To return to local mode, press the front panel Local key. When you
power-cycle the instrument, it will also start in local mode.
Agilent Serial BERT, Programming Guide, May 2004 11

Programming Basics Instrument Behavior
12 Agilent Serial BERT, Programming Guide, May 2004

A Typical Serial BERT Program

The Serial BERT can be controlled by a remote program using the IVI-

COM driver.

The sections of this Help provide you with information you can use to
quickly get started with your first program. The examples here are
written for Visual Basic 6.0, but can also be ported to any
programming language supported by IVI-COM.

See the Serial BERT driver’s Help for more information.

Prerequisites

Before you can control a Serial BERT remotely, the client computer
(your PC, the Serial BERT is the host) must meet the following
prerequisites:

• Agilent VISA I/O libraries installed

• IVI-COM driver installed

• Configured IO connection to the Serial BERT (you should be able to
find the Serial BERT with the I/O libraries VISA assistant)
Agilent Serial BERT, Programming Guide, May 2004 13

A Typical Serial BERT Program Initializing the Connection to the Serial BERT
Initializing the Connection to the
Serial BERT

The first step in setting up a program for controlling the Serial BERT

is to create an object that corresponds to the instrument. You can
either use the Serial BERT class (AgilentN490x), or you can use the
IVI-compliant Agilent BERT class (AgilentBert).

TIP If you set up your code using the AgilentBert class, you can easily port
your programs to other IVI-compliant Agilent instruments. As
Agilent’s fulfillment of the IVI-compliance requirements, this class is
shared by all other Agilent IVI-compliant instruments.

The examples in this document show how to set up a reference to the
AgilentBert class and use this class.

Initializing the Connection – Procedures

The following code shows you how you would establish the connection
to the instrument. The ResourceName
("TCPIP1::10.0.0.207::inst0::INSTR") must be replaced by the
instrument’s address string from the VISA Assistant.

' First our declarations...
Private myN490X As AgilentN490x
Private myBERT As AgilentBert
Private myPG As AgilentBertLib.IAgilentBertPG
Private myPGClock As AgilentBertLib.IAgilentBertPGClock
Private myPGOut As AgilentBertLib.IAgilentBertPGOutput
Private myEDDataIn As AgilentBertLib.IAgilentBertEDDataIn

Private Sub Form_Load()

Set myN490X = New AgilentN490x
Set myBERT = myN490x.IAgilentBert

myBERT.Initialize "TCPIP1::10.0.0.207::inst0::INSTR", True, True

End Sub

Private Sub Form_Unload(Cancel As Integer)
myBERT.Close
End Sub
14 Agilent Serial BERT, Programming Guide, May 2004

Working with the IVI-COM Objects A Typical Serial BERT Program
Working with the IVI-COM
Objects

The Serial BERT IVI-COM driver uses a hierarchical class structure

that follows the build up of the instrument. For example, the
instrument itself is represented by the class AgilentN490x. The
pattern generator is represented by the class IAgilentN490xPG.

To access the instrument’s pattern generator, you have to first access
the object, then the object’s pattern generator collection, and finally
the actual pattern generator.

The items in the collections are accessed by the name. The easiest way
to get the name (if you do not know it) is through the collection’s Name
property.

Working with the IVI-COM Objects –
Procedures

The following example shows you how to set up different objects for
controlling the Serial BERT. These objects are used in the following
examples.

Private Sub InitializeObjects()
' TIP: Call this sub from the Form_Load sub.
Dim EDName as String
With myBERT

' Get the pattern generator using the naming conventions
Set myPG = .PGs.Item("PG1")
' Use the myPG object to get sub-items
Set myPGClock = myPG.Clock
Set myPGOut = myPG.Outputs.Item("PGOutput1")

' Get the error detector by catching and using its name:
EDName =.EDs.Name(1)
Set myED = .EDs.Item(EDName)
Set myEDDataIn = myED.Input.DataIns.Item("EDDataIn1")

End With

End Sub
Agilent Serial BERT, Programming Guide, May 2004 15

A Typical Serial BERT Program Changing Instrument Parameters
Changing Instrument
Parameters

The following examples show you how to:

• Change the pattern generator’s clock rate and voltages

• Trigger auto-synchronization

• Set up a pattern

Change the Pattern Generator’s Clock Rate and Output
Voltages
The following code sets the pattern generator’s clock frequency and
toggles as example the offset voltage between 0 and 0.5 Volts.

Private Sub SetUpPG
' Set the clock frequency
myPGClock.Frequency = 3 * 10 ^ 9

' Toggle the offset voltage (for demo purposes)
If myPGOut.OutVoltage.VOffset = 0 Then

myPGOut.OutVoltage.VOffset = 0.5
Else

myPGOut.OutVoltage.VOffset = 0
End If
End Sub

Trigger Synchronization
The following code causes the error detector to synchronize.

Private Sub RunSync()
' First run the synchronization
myEDDataIn.Sampling.AutoAlign

' And then align the data
myEDDataIn.Synchronisation.SyncNow

End Sub
16 Agilent Serial BERT, Programming Guide, May 2004

Changing Instrument Parameters A Typical Serial BERT Program
Set Up a Pattern
The following code shows you how to set up a pattern. It additionally
shows a small function that converts strings into arrays that Visual
Basic can handle.

Private Sub SetUpPattern()
Dim myPattern As AgilentBertLib.IAgilentBertLocalPatternfile

' Use local pattern 13 to save the pattern files
' to a different location

Set myPattern = myBERT.LocalPatternfiles._
Item(myBERT.LocalPatternfiles.Name(13))

With myPattern
' Set the length and description
.Length = 8
.Description = "Test pattern"

' Define the pattern to be alternate, set the data
' For VB, we have to convert the data to an array of doubles
' See function below for details
.Alternate = True
.SetData 1, AgilentLocalPatternFormatBin, _

SetPatternData("00001111", AgilentLocalPatternFormatBin)
.SetData 2, AgilentLocalPatternFormatBin,

SetPatternData("11111111", AgilentLocalPatternFormatBin)

End With
' And now load the pattern to the pattern generator
myPGOut.SelectData AgilentN490xPGOutputSelectFile, _

myPattern.Location

' And to the error detector
myEDDataIn.SelectData AgilentBertEDDataInSelectFile, _

myPattern.Location

End Sub

Private Function SetPatternData(DataString As String, _
Format As AgilentBertLib.AgilentBertEDPatternFormatEnum)

Dim myPattern() As Double
Dim ix As Integer
ReDim myPattern(Len(DataString) - 1)

For ix = 1 To Len(DataString)
Select Case Format
' How to interpret the string depends on the format

Case AgilentBertEDPatternFormatBin
myPattern(ix - 1) = CByte(Mid(DataString, ix, 1))

Case AgilentBertEDPatternFormatHex
myPattern(ix - 1) = CByte("&H" & Mid(DataString, ix, 1))
Agilent Serial BERT, Programming Guide, May 2004 17

A Typical Serial BERT Program Changing Instrument Parameters
Case AgilentBertEDPatternFormatRaw
myPattern(ix - 1) = CByte(Mid(DataString, ix, 1))

End Select
Next
SetPatternData = myPattern
End Function
18 Agilent Serial BERT, Programming Guide, May 2004

Recommended Programming
Techniques

This chapter provides some recommended techniques you should use

when programming the Serial BERT.

Controlling the Output Levels

How Serial BERT Controls the Output Levels

When the output levels are changed at the Serial BERT’s data and
clock output ports, four parameters are changed:

• Vhi

• Vlo

• Vampt

• Voffs

The Serial BERT groups these parameters into “pairs” (Vampt/Voffs,

Vhi/Vlo). If one of these values is modified, its “partner” remains

constant, and the values in the other pair are modified accordingly.
For example, if Vampt is changed, Voffs stays constant, and Vhi and Vlo

are modified accordingly.

Changing the Voltages with IVI-COM The IVI-COM driver provides a convenient function for setting Vampt

and Voffs : Configure. To set the pattern generator’s data output

voltage:

Private Sub SetPGDataOutVolt()
Dim myPG As AgilentN490xLib.IAgilentN490xPG
Dim myPGOut As AgilentN490xLib.IAgilentN490xPGOutput
Agilent Serial BERT, Programming Guide, May 2004 19

Recommended Programming Techniques Allowing Serial BERT to Settle
Set myPG = myBERT.PGs.Item("PG1")
Set myPGOut = myPG.Outputs.Item("PGOutput1")

myPGOut.OutVoltage.Configure 1.5, 0.5, _
myPGOut.OutVoltage.VTermination

End Sub

Changing the Voltages with SCPI The following command shows how you would set the data output so
that it has an amplitude of 1.5 V and an offset of 0.5 V:

SOUR:VOLT:AMPT 1.5; OFFS 0.5

This sets the output accordingly (VHi = 1.25 V, VLo = –0.25).

Conversely, you could set VHi and VLo directly:

SOUR:VOLT:HIGH 1.25; LOW –0.25

This has the same effect.

Allowing Serial BERT to Settle

When patterns are sent to the pattern generator or error detector, the

Serial BERT requires some time to settle before. The following topics
explain how the instruments react to pattern changes.

How Pattern Changes Affect the Pattern Generator
The Serial BERT requires some time to change the patterns at the
pattern generator and error detector. This is particularly true for large
text-based (ASCII) patterns that have to be loaded from the file
system. In such a case, it is a recommended technique to always query
the Serial BERT’s Operation Complete status after changing the
pattern.

How Pattern Changes Affect the Error Detector
When the pattern changes, the error detector has to resync to the new
incoming signal. Depending on the signal, the alignment method used,
and the desired BER threshold, this procedure can take up to half a
minute or more.
20 Agilent Serial BERT, Programming Guide, May 2004

Allowing Serial BERT to Settle Recommended Programming Techniques
Determining if Conditions have Settled

When patterns have been changed, you should check the status
registers to make sure that the operation is complete before
continuing with your program.

Checking the Settling with IVI-COM
The following example illustrates how to check the synchronization
status using IVI-COM.

Private Sub CheckSyncStatus()
Dim BERTStatus As AgilentN490xLib.IAgilentN490xStatus
Dim myED As AgilentN490xLib.IAgilentN490xED
Dim myPG As AgilentN490xLib.IAgilentN490xPG

Set BERTStatus = myBERT.Status
Set myED = myBERT.EDs.Item("ED1")
Set myPG = myBERT.PGs.Item("PG1")

' First enable the register of interest:
' Operation register, bit 10, positive transition
BERTStatus.Register(AgilentN490xStatusRegisterOperation, _

AgilentN490xStatusSubRegisterEnable) = &H400
BERTStatus.Register(AgilentN490xStatusRegisterOperation, _

AgilentN490xStatusSubRegisterPositiveTransition) = &H400
BERTStatus.Register(AgilentN490xStatusRegisterOperation, _

AgilentN490xStatusSubRegisterNegativeTransition) = &H400

' Standard Event register, bit 0, positive transition
BERTStatus.Register(AgilentN490xStatusRegisterStandardEvent, _

AgilentN490xStatusSubRegisterEnable) = 1

' Now clear the registers
BERTStatus.Clear

' ED should track the PG
myED.Input.DataIns.Item("EDDataIn1").TrackingEnabled = True

' Load the pattern
myPG.Outputs.Item("PGOutput1").SelectData
AgilentN490xPGOutputSelectFile, "testptr.ptrn"

' Just wait until the Operation bit goes low
Do While BERTStatus.SerialPoll And &H80

DoEvents
Loop
End Sub
Agilent Serial BERT, Programming Guide, May 2004 21

Recommended Programming Techniques Allowing Serial BERT to Settle
Checking the Settling with SCPI
The following example illustrates how to check the synchronization
status using SCPI.

/* We need to check sync loss bit
of the Questionable register (bit 10) */

const unsigned int QUESTION_REG_10 = 2^10;

unsigned int question_reg;
unsigned int opc_stat;

/* Make sure the error detector tracks
the pattern generator */

viPrintf(vi, "SENSe1:PATTern:TRACk ON\n");

/* Load a pattern file to the instruments */
viPrintf(vi, "SOURce1:PATTern:SELect FILename, testfile.ptrn\n");

/* Wait until the instrument is in operational state */
viQueryf(vi, "*OPC?\n", "%d", &opc_stat);

do
{

/* Get the Questionable register */
viQueryf (vi, "STATus:QUEStionable:CONDition?\n", "%d",

&question_reg);

/* Loop until the sync loss bit goes low */
}
while(question_reg && QUESTION_REG_10);

If Question_con_reg returns a value that includes bit 10 (“1024”), this is
an indication that the error detector has not yet synchronized to the
new pattern. In this case, the instrument has not yet settled.

NO TE File accessing, especially for large files can take some time. Control
programs must be prepared for time-outs of this size.
22 Agilent Serial BERT, Programming Guide, May 2004

Reading the Serial BERT’s Status Recommended Programming Techniques
Reading the Serial BERT’s Status

The Serial BERT has a set of status registers that you can use to
monitor the status of the hardware, software, and any running tests.

Overview of Registers Specifically, it has the following registers:

• Status Byte

The Status Byte is a single register that stores the events occurring
on the other registers.

• Standard Event Status Register

The Standard Event Status Register monitors some non-critical
errors and basic operations.

• Questionable Data Status Register

The bits in the Questionable Data Status Register are set when
certain events occur in the Serial BERT that can lead to
questionable results.

• Operation Status Register

The Operation Status Register indicates when certain operations
have been completed.

• Clock Loss Status Register

The Clock Loss Status Register indicates if either the Serial BERT’s
pattern generator or error detector have lost the clock signal.

How Serial BERT Uses Status Registers

You can determine the state of certain instrument hardware and
firmware events and conditions by programming the status register
system.

The following subsections provide you with details about the
Serial BERT’s status system.

Overview of the Serial BERT’s Status System
The Serial BERT has status reporting features that give important
information about events and conditions within the instrument. For
example, a flag may be set to indicate the end of a measurement or
perhaps a command error. To access this information, it is necessary
to query a set of registers using SCPI.
Agilent Serial BERT, Programming Guide, May 2004 23

Recommended Programming Techniques Reading the Serial BERT’s Status
Serial BERT’s Status System Structure
The Serial BERT’s status system is comprised of multiple registers
that are arranged in a hierarchical order. The lower-level status
registers propagate their data to the higher-level registers in the data
structures by means of summary bits. The Status Byte register is at the
top of the hierarchy and contains general status information for the
Serial BERT’s events and conditions. All other individual registers are
used to determine the specific events or conditions.

For figures showing Serial BERT’s status registers, see “Serial BERT
Register Model” on page 25.

Status Register Group Model
The following figure illustrates the typical structure of a status
register.

As shown in this figure, most status registers actually consist of five
registers:

• Condition

The condition register continuously monitors the hardware and
firmware status of the instrument. There is no latching or buffering
for a condition register. It is updated in real time.

This register is read by the CONDition? SCPI commands.

• Negative Transition

The negative transition register specifies the bits in the condition
register that will set corresponding bits in the event register when
the condition bit changes from 1 to 0.

This register is set and read by the NTRAnsition[?] SCPI commands.

• Positive Transition

A positive transition register specifies the bits in the condition
register that will set corresponding bits in the event register when
the condition bit changes from 0 to 1.

Event
Register

Event Enable
Register

Condition
Register

Bit 1

Bit 0

Bit 15

Transition
Filter
PTRans
NTRans
PTRans
NTRans

PTRans
NTRans

.

Bit 1

Bit 0

Bit 15

Bit 1

Bit 0

Bit 15
24 Agilent Serial BERT, Programming Guide, May 2004

Reading the Serial BERT’s Status Recommended Programming Techniques
• Event

An event register latches transition events from the condition
register as specified by the positive and negative transition filters.
Bits in the event register are latched, and once set, they remain set
until cleared by either querying the register contents or sending the
*CLS command.

• Event Enable

An enable register specifies the bits in the event register that can
generate a summary bit. Summary bits are, in turn, used by the next
higher register.

The registers work together as follows:

1 The Condition Register corresponds to a condition on the hardware
or in the software. If the monitored condition is present, the
corresponding bit is high.

2 The Transition Registers monitor changes in the Condition
Register. If the Positive Transition Register is configured to watch
for a condition, when this condition occurs, and the bit in the
Condition Register goes high, the Positive Transition Register
passes this event to the Event Register.

3 If this bit is enabled in the Enable Event Register, a summary bit is
generated in the next higher register. For the higher register, this is
the Condition Register, and the event is handled the same way as
described here.

NOTE The transition and enable registers for the Failure Status register (and
its subregisters) cannot be modified.

See “Preparing the Registers (IVI-COM)” on page 35 for an example of
how to access the registers in IVI-COM. See “Preparing the Registers
(SCPI)” on page 37 for a SCPI example.

Serial BERT Register Model

The Serial BERT has the following status registers:

• Status Byte

• Standard Event Status

• Questionable Data Status

• Operation Status

• Clock Loss
Agilent Serial BERT, Programming Guide, May 2004 25

Recommended Programming Techniques Reading the Serial BERT’s Status
The following figure shows the Serial BERT’s status register hierarchy.
This figure shows the Status Byte.

Mnemonic

Not used

GATE ON

Not used

BIT ERR

GATE END

Operation Status Register

Not used

0 - 2

4

5 - 6

8

9

Bit

10

CLK/DATA CTR11

DATA 0/1 THR ALIGN12

AUTO ALIGN13

Not used15

0x10

0x0100

0x0200

Mask Value

0x0800

0x1000

0x2000

Questionable Status Register

11 - 15

0

1 - 4

5

7

8

9

Bit

10

Mnemonic

DATA LOSS

Not used

CLOCK LOSS

PROTECT ED DATA IN

UNCAL

Not used

SYNC LOSS

Not used

0x20

0x80

0x0100

Mask Value

0x0400

Clock Loss Status Register

0

1

Bit Mnemonic

ERR DET

PAT GEN

Mnemonic

OPC

Not used

QYE

DDE

EXE

CME

Not used

Standard Event Status Register

PON

0

1

2

3

4

5

6

Bit

7

Not used8 - 15

0x01

0x04

0x08

0x10

0x20

Mask Value

0x80

Status Byte Register

0 - 1

2

3

4

5

6

7

Bit Mnemonic

Not used

EAV

QUES

MAV

ESB

SRQ | MSS

OPER

0x01

0x02

Mask Value

0x04

0x08

0x10

0x20

0x40

0x80

Mask Value

6
PROTECT PG DELAY

CONTROL IN
0x40

GATE ABORT7 0x0080

0x01

ERR LOC CAPTURE14 0x4000

OVERHEAT3 0x08
26 Agilent Serial BERT, Programming Guide, May 2004

Reading the Serial BERT’s Status Recommended Programming Techniques
Status Byte
The Status Byte is the summary register to which the other registers
report. Each reporting register is assigned a bit in the Status Byte
Register.

The bits in the Status Byte byte have the following meaning:

Bit 6 Bit 6 has two definitions, depending on how the access is polled:

• Serial Poll

If the value of the register is read using the serial poll (SPOLL), bit 6
is referred to as the Service Request (SRQ) Bit. It is used to
interrupt and inform the active controller that the instrument has
set the service request control line, SRQ.

• *STB?

If the register is read using the common command *STB? , bit 6 is
referred to as the master summary bit or MSS bit. This bit indicates
that the instrument has requested service. The MSS bit is not
cleared when the register is read using the *STB? command. It
always reflects the current status of all the instrument’s status
registers.

Bit Mnemonic Description

0 Not used

1 Not used

2 EAV Error available: The error queue contains at least one message.

3 QUES A bit has been set in the Questionable Data Status register (indi-
cates that a signal is of questionable quality).

4 MAV Message available: There is at least one message in the message
queue.

5 ESB A bit in the Standard Event Register has been set.

6 SRQ or
MSS

Value depends on the polling method; see below for details.

7 OPER A bit in the Operation Status Register has been set.
Agilent Serial BERT, Programming Guide, May 2004 27

Recommended Programming Techniques Reading the Serial BERT’s Status
Standard Event Status Register
The Standard Event Status register is a 16-bit register group that gives
general-purpose information about the instrument. It sets bit 5 in the
Status Byte.

NO TE This register is compatible with the generalized status register model.
It is comprised of an event and enable register, but no condition
register or transition filter. All positive transitions in this register are
latched.

Clock Loss Register
The Clock Loss Register group indicates whether the pattern
generator or error detector has experienced a clock signal loss. The
output of this register sets bits 5 and 9 (Clock Loss) in the
Questionable Status Register.

Bit Mnemonic Description

0 OPC Operation Complete bit. It is set in response to the *OPC command,
but only if the instrument has completed all its pending operations.

1 Not used

2 QYE Query error bit. It indicates that there is a problem with the output
data queue. There has been an attempt to read the queue when it
is empty, the output data has been lost, or the query command has
been interrupted.

3 DDE Device-dependent error bit. It is set when an instrument-specific
error has occurred.

4 EXE Execution error bit. It is set when a command (GPIB instrument
specific) cannot be executed due to an out of range parameter or
some instrument condition that prevents execution.

5 CME Command error bit. It is set whenever the instrument detects an
error in the format or content of the program message (usually a
bad header, missing argument, or wrong data type etc.).

6 Not used

7 PON Power-on bit. It is set each time the instrument is powered from off
to on.

8-15 Not used

Bit Mnemonic Description

0 ERR DET Clock loss condition at the error detector.

1 PAT GEN Clock loss condition at the pattern generator.

2-15 Not used
28 Agilent Serial BERT, Programming Guide, May 2004

Reading the Serial BERT’s Status Recommended Programming Techniques
Questionable Status Register
The Questionable Status Register group indicates that a currently
running measurement is of questionable quality. The output of this
register sets bit 3 of the Status Byte.

Bit Mnemonic Description

0 DATA LOSS This bit is set when the data source is turned off, not connected, or
the cables or device is faulty. This bit can also set when the 0/1
threshold is not in the eye limits of the incoming data signal. In this
last case, use Auto Align or select Avg 0/1 Threshold.

1-4 Not used

5 CLOCK
LOSS

This bit is set when the pattern generator receives no external
clock signal or the error detector receives no clock input signal. To
find out which of the 2 events is causing this bit to set, you must
poll the Clock Loss Status Register; see “Clock Loss Register” on
page 28.

6 PROTECT
ED DATA
IN

This bit indicates that the protection mechanism for the Data Input
port of the error detector was activated, e.g. the voltage or current
measured at this port was out of range.

7 PROTECT
PG DELAY
CTRL IN

This bit indicates that the protection mechanism for the Delay Con-
trol Input port of the pattern generator was activated, e.g. the volt-
age or current measured at this port was out of range.

8 UNCAL This bit is set when the serial number of the installed pattern gen-
erator or error detector tray does not match the calibration file in
the instrument.

9 Not used

10 SYNC LOSS This bit is set when the error detector pattern does not match the
incoming data pattern or the BER of your device is higher than the
sync threshold.

11-15 Not used
Agilent Serial BERT, Programming Guide, May 2004 29

Recommended Programming Techniques Reading the Serial BERT’s Status
Operation Status Register
The output of this register gives information about the current
operation the instrument is performing. It sets bit 7 of the Status Byte.

Bit Mnemonic Description

0-2 Not used

3 OVERHEAT Either the pattern generator or error detector has a higher-than-
normal temperature.

4 GATE ON An accumulated measurement is in progress.

5-6 Not used

7 GATE
ABORT

Indicates that the repetitive accumulation period was aborted.

8 BIT ERR The instrument has detected a bit error.

9-10 Not used

11 CLK/DATA
CTR

Indicates that the clock/data alignment is in progress.

12 DATA 0/1
THR ALIGN

Indicates that the 0/1 threshold alignment is in progress.

13 AUTO
ALIGN

Indicates that the auto alignment is in progress.

14 ERR LOC
CAPTURE

Indicates that there is an Error Location Capture measurement in
progress.

15 Not used
30 Agilent Serial BERT, Programming Guide, May 2004

Using Error Location Capture Recommended Programming Techniques
Using Error Location Capture

What is Error Location Capture? Error Location Capture allows to capture the position of an errored bit
in the incoming bitstream. The instrument searches for the first bit
errored in the incoming bitstream. The address of the errored bit is
saved after the error is located.

This feature can be used to find rare or random errors. A DUT could
have problems handling long series of zeroes. Error Location Capture
can be used to locate the bit errors in such cases.

Restrictions for Error Location Capture
Error Location Capture is subject to the following restrictions:

• Only memory-based patterns with a unique 48-bit pattern (detect
word) are allowed.

• The error detector must be aligned to the incoming stream.

• No alignment features can run during error location capture: Auto
Align, 0/1 Threshold Center, Data Center

• No other advanced measurement (Output Timing, Output Levels,
etc.) can be running.

• Error Location Capture can only run when the BER Location Mode
is set to more than one bit (for example, all bits, or a block with a
length > 1).

How to Run Error Location Capture
The following steps are recommended for running Error Location
Capture:

1. Clear the Status registers.

2. Set up the status registers to ensure that the ERR LOC CAPTURE
bit is monitored.

The Operation Status register should catch positive transitions on
the ERR LOC CAPTURE bit (bit 14).

3. Set the Error Location mode to scan the incoming bit stream for all
bits.

4. Start the Error Location Capture. This is an overlapped command.
Agilent Serial BERT, Programming Guide, May 2004 31

Recommended Programming Techniques Using Error Location Capture
5. Set up a loop that queries the Operation register until the Error
Location bit goes high. This indicates that the Error Location
Capture has started.

6. Set up a loop that queries the Error Location status to see if it is
still running.

7. When Error Location Capture has quit, check the state.

8. If the state is valid, query the location of the errored bit.

NO TE Because Error Location Capture would run forever if no errors are
detected, it is recommended to also set up a time-out in your program.

How to Abort Error Location Capture
Error Location Capture runs until it detects an error and stops. If
there are no errors in the data stream, it would run forever. It can also
be interrupted by a remote program (or user) by the following actions:

• Disabling error location

– IVI-COM: IAgilentN490xEDErrorLocation.Mode =
AgilentN490xEDErrorLocationModeOff

– SCPI: SENS:ELOC OFF

• Incorrect sample point (faulty measurement)

• Action not compatible with error location currently being
performed, for example:

– Selecting a new pattern

– Changing the current pattern

– Starting synchronization or alignment

There are various other actions that also abort the run. Changing the
sampling point has no effect (as long as the sampling point does not
leave the eye).

How to See if Error Location Capture is Running
To see if Error Location Capture is currently running:

1. Clear the Status system.

2. Call *OPC?. This shows that an overlapped command is running. It
does not identify which overlapped command.

3. Query the Status register. If the Operation Status bit is high (bit 7),
continue. Otherwise, Error Location Capture is not running.
32 Agilent Serial BERT, Programming Guide, May 2004

Using Error Location Capture Recommended Programming Techniques
4. Check the status of the Operation Status register. If the ERR LOC
CAPTURE bit (bit 14) is high, Error Location Capture is running.

5. Check the status of Error Location Capture:

IVI-COM: Call
IAgilentN490xEDErrorLocation.IsCaptureErrorsComplete.

SCPI: Call SENS:ELOC?. A 1 indicates that Error Location Capture
has been triggered.

6. The SCPI command SENS:ELOC:VERB? may also indicate that Error
Location Capture is running.

Understanding the Status
Error Location Capture is not immediately able to detect bit errors
when the start command is given, and does not immediately terminate
when the stop command is given. There is a specific delay that must be
heeded. For remote programming, it is sufficient to wait 400 ms. It is
also possible to check the status in the status registers.

The Error Location Capture bit (bit 14) in the Operation register
indicates the true Error Location Capture status. If this bit is high, an
Error Location Capture measurement is running.

The Error Location Capture query on the other hand returns the
status of the last ELOC command (and not the true Error Location
Capture status).

In other words, if the Error LocationLocation Capture query indicates
that Error Location Capture is running, this actually means that Error
Location Capture has been triggered (but is not necessarily running).
Otherwise, it indicates that Error Location Capture has been either
aborted (and may be still running) or successfully finished.
Agilent Serial BERT, Programming Guide, May 2004 33

Recommended Programming Techniques Using Error Location Capture
The following diagram indicates the value of the Error Location
Capture bit in the Operation register and the Error Location Capture
query return value:

Handling the Results
Once an Error Location Capture has been successfully finished, you
can get the following results:

• Number of errored bits found

• Location of first errored bit

• Comparison pattern between expected pattern and received data

The captured data is saved as an alternating pattern. Pattern A
contains the expected data. Pattern B contains the errored data: 0s
if the expected bits were also received, 1s for errored bits. To
calculate the captured pattern, EXOR the bits from pattern A with
the bits from pattern B.

The pattern description contains the first error, the error count,
date and time.

The name of the pattern file is ELOC_RESULT_CURRENT.ptrn for
the current capture and ELOC_RESULT_PREVIOUS.ptrn for the
previous capture. These patterns are saved under
C:\N4901A\Pattern on the machine with the firmware server.

ELOC
Command

Ready for
Bit Error

ELOC
Query

ONCE OFF

Ready for
new start

ERR LOC
CAPTURE Bit

400 ms

400 ms
34 Agilent Serial BERT, Programming Guide, May 2004

Using Error Location Capture Recommended Programming Techniques
How to Handle Run Errors
Errors in Error Location Capture are handled differently than
standard instrument errors:

• Errors caused by starting or stopping Error Location Capture are
put in the standard error queue.

• Internal run errors caused during Error Location Capture are
neither put into the standard error queue nor reported by the status
register’s error flag. In such a case, the response to
SENS:ELOC:VERB? is ELOC__FAILED.

Using Error Location Capture – Procedures

There is a slight delay (~400 ms) after error location capture is
triggered before the measurement actually starts. There are two ways
to handle this:

• For simplicity, just wait in your program 400 ms before continuing.

• For precision, monitor the error location status bit until it registers
that error location has started.

The following code examples show how to set the registers and then
run Error Location Capture.

Running ELOC in IVI-COM
The following subroutines show you how you can prepare the registers
and then run error location.

Preparing the Registers (IVI-COM) Private Sub PrepareRegisters()

' Define the classes;
' myBERT is the already created SerialBERT object
Dim myStatus As AgilentN490xLib.IAgilentN490xStatus
Dim myED As AgilentN490xLib.IAgilentN490xED
Dim myEDDataIn As AgilentN490xLib.IAgilentN490xEDDataIn
Dim myELOC As AgilentN490xLib.IAgilentN490xEDErrorLocation

Set myED = myBERT.EDs.Item("ED1")
Set myEDDataIn = myED.Input.DataIns.Item("EDDataIn1")
Set myELOC = myEDDataIn.ErrorLocation
Set myStatus = myBERT.Status

' Disable error location
myELOC.Mode = AgilentN490xEDErrorLocationModeOff
Agilent Serial BERT, Programming Guide, May 2004 35

Recommended Programming Techniques Using Error Location Capture
' Set the registers: &H4000 is bit 14, the ELOC bit
' in the Operation register

With myStatus
.Register(AgilentN490xStatusRegisterOperation, _

AgilentN490xStatusSubRegisterEnable) = &H4000

.Register(AgilentN490xStatusRegisterOperation, _
AgilentN490xStatusSubRegisterPositiveTransition) = &H4000

.Register(AgilentN490xStatusRegisterOperation, _
AgilentN490xStatusSubRegisterNegativeTransition) = 0

' And clear the registers
.Clear

End With

End Sub

Running Error Location Capture Private Sub RunErrorLocation()

' Define the classes;
' myBERT is the already created SerialBERT object
Dim myED As AgilentN490xLib.IAgilentN490xED
Dim myEDDataIn As AgilentN490xLib.IAgilentN490xEDDataIn
Dim myELOC As AgilentN490xLib.IAgilentN490xEDErrorLocation
Dim myStatus As AgilentN490xLib.IAgilentN490xStatus
Dim Timeout As Double
Dim bTimedOut As Boolean

Set myED = myBERT.EDs.Item("ED1")
Set myEDDataIn = myED.Input.DataIns.Item("EDDataIn1")
Set myELOC = myEDDataIn.ErrorLocation
Set myStatus = myBERT.Status

' Error location only runs for all bits
myELOC.Mode = AgilentN490xEDErrorLocationModeAllBits

' Start the actual capture
myELOC.CaptureErrors

' Wait until the ELOC bit goes high
Do Until myStatus.Register(AgilentN490xStatusRegisterOperation, _

AgilentN490xStatusSubRegisterCondition) And &H4000
DoEvents

Loop

' Wait until ELOC is finished
Do Until myELOC.IsCaptureErrorsComplete

DoEvents
Loop
36 Agilent Serial BERT, Programming Guide, May 2004

Using Error Location Capture Recommended Programming Techniques
Select Case myELOC.ReadState
Case AgilentN490xEDErrorLocationStateSuccess
' Get the error count and location

Msgbox myELOC.ReadCount " errors found." & vbCrLF & _
"First error found at: " & myELOC.BitAddress

Case AgilentN490xEDErrorLocationStateFailed
Msgbox "Error Location Capture failed."

Case AgilentN490xEDErrorLocationStateAborted
Msgbox "Error Location Capture aborted."

End Select

End Sub

Running ELOC in SCPI

Preparing the Registers (SCPI) To verify that the instrument is ready by monitoring the error location
status bit:

1 Disable error location capture:

SENSe1:ELOCation OFF

2 Activate the error location bit (bit 14) in the Operation register:

STATus:OPERation:ENABle 16384

3 Enable monitoring of positive transitions at the error location bit:

STATus:OPERation:PTRansition 16384

4 Disable monitoring of negative transitions at the error location bit:

STATus:OPERation:NTRansition 0

5 Clear the Operation register:

STATus:OPERation?

6 Check the status byte:

*STB?

The status byte should return 0.

Running Error Location Capture To run error location capture in SCPI:

1 Start error location capture:

SENSe1:ELOCation ONCE

2 Set up a loop in your program and wait until the status byte value
changes:

*STB?

This should return 0. Your loop should continue until the return
value includes the Operation bit (7) (*STB? && 2^7 > 0).
Agilent Serial BERT, Programming Guide, May 2004 37

Recommended Programming Techniques Using Interrupts
3 Check the Operation status register:

STATus:OPERation?

When the error location has started, the return value should include
the error location bit (*STAT:OPER? && 2^14 > 0).

4 Set up a loop in your program and wait until the error location
capture has finished:

SENSe1:ELOCation?

This returns a 1 when error location capture has finished.

5 Verify that error location capture has valid results:

SENSe1:ELOCation:VERBose?

6 If ELOC__SUCCESS (error found) is returned, get the number of errored
bits found:

SENSe1:ELOCation:ECOunt?

7 If only one errored bit is found, query the location:

SENSe1:BEADdress?

See also “Handling the Results” on page 34 for more information.

Using Interrupts

How Serial BERT Uses Interrupts You may want to know when a particular event occurs, without having
to continually poll the reporting register. The best way to do this is
with the use of interrupts.

Service Request Example Interrupts or Service Requests (SRQ) allow the instrument to pause
the controller when the contents of a particular register change. The
controller can then suspend its present task, service the instrument,
and return to its initial task.

The basic steps involved in generating a service request (SRQ) are as
follows:

• Decide which particular event should trigger a service request.

• Locate the corresponding status register.

• Set the transition filter to pass the chosen transition of that event.
38 Agilent Serial BERT, Programming Guide, May 2004

Using Interrupts Recommended Programming Techniques
• Set the enable register from that register group to pass that event to
set the summary bit in the Status Byte Register.

• Set the Status Byte Enable Register to generate an SRQ on the
chosen summary bit being set.

Using Interrupts – Procedures

The process of using interrupts is best explained by looking at an
actual example. The following examples generate an SRQ from an
event in the Operation Status group.

Specifically, they cause the error detector to generate a service request
at the end of a measurement period. This is done by catching the
Serial BERT’s GATE END event (bit 9 in the Operation Status
register).

Using Interrupts with SCPI
To generate an interrupt at the end of a measurement period:

1 Set the Operation Status register’s transition registers so that the
positive transition of the GATE END bit is caught.

:STATus:OPERation:PTRAnsition 512
:STATus:OPERation:NTRAnsition 0

Note: The default setting of the transition registers is to pass only
positive transitions.

2 Enable bit 9 of the Operation Status register.

:STATus:OPERation:ENABle 512

3 Program the Service Request Enable Register to generate a service
request when the Operation Status summary bit (OPER) is set in the
Status Byte register.

*SRE 128
Agilent Serial BERT, Programming Guide, May 2004 39

Recommended Programming Techniques Working With User Patterns
Working With User Patterns

The following topics provide information on the recommended

techniques for working with user patterns.

Techniques for Editing User Patterns
The recommended way to edit a user pattern in IVI-COM is as follows:

• Define the pattern

This includes the length, description, and whether the pattern is
alternate or standard.

• Insert the data

The data format and the data itself must be defined.

• Send the pattern to the pattern generator and/or error detector

• Set up a trigger on the pattern generator to be sent with the pattern

NO TE Serial BERT can use 12 user patterns (UPATtern<n>), and any number
of user pattern files (UFILe). There is absolutely no difference between
these patterns. The user patterns are stored in the same format on the
file system, with the name UPAT<n>.ptrn (for example, upat12.ptrn).

The user patterns are provided for backwards compatibility. It is
recommended that you use the user pattern files, and not the user
patterns.

NO TE UPAT0 is a synonym for the pattern currently executed by the
instrument.

How the Serial BERT Uses Alternate Patterns
These patterns are used to define the pattern generator's data output
signal. Various commands can be used to define which pattern is sent
at any one time. These commands, and how they interact, are
described below.
40 Agilent Serial BERT, Programming Guide, May 2004

Working With User Patterns Recommended Programming Techniques
Source The source defines how the Serial BERT determines what should be
output. The following alternatives are available:

• Internal

Alternate pattern output is determined internally by the instrument
(for example, from the user interface or remote program).

• External

Alternate pattern output is determined by the signal at AUX IN.
This can either be edge-sensitive or level-sensitive.

• Blanking

Output can be shut off according to the level at AUX IN. If AUX IN
high, output is generated, if AUX IN low, no output.

NOTE It is important to understand this setting regarding the usage of the
signal at the AUX IN port. If you select External, the signal at AUX IN
defines which pattern (A or B) is sent. If you select Blanking, the
signal at AUX IN defines if a signal is sent at all. The latter also works
for standard (not alternating) patterns.

Mode Mode defines how the output is generated. Alternatives are:

• Alternate

Output signal is defined by the selected pattern.

• Oneshot

One instance of pattern B is inserted into the output pattern upon
trigger.

• LLevel

Output depends on signal level at AUX IN. If high, pattern B is
output, if low, pattern A is output.

• REdge

Output depends on the signal edge at AUX IN. At rising edge, one
instance of pattern B is output.
Agilent Serial BERT, Programming Guide, May 2004 41

Recommended Programming Techniques Working With User Patterns
AlternatePattern/Select AlternatePattern/Select defines what pattern is output. It is only
applicable to Alternate patterns with the Source set to INTErnal or
output Blanking. The following options are available:

• A Half

Only pattern A is output.

• B Half

Only pattern B is output.

• AB Half

Pattern A and pattern B are sent alternatively (one instance A, one
instance B, and so on).

The following table shows how these commands work together:

How Serial BERT Sends Triggers
The Serial BERT can repeatedly send trigger signals either according
to a clock divider, or according to the output pattern.

Triggering upon Divided Clock The trigger pulse is sent from the pattern generator’s TRIG OUT port.
If the trigger mode is Divided Clock, the trigger is sent according to
the clock ratio.

Source Mode Description

External LLevel The signal at Aux In controls which half of the
pattern is output.
If Aux In=logic high, pattern B is sent.
If Aux In=logic low, pattern A is sent.

REdge When a rising edge occurs at the Aux In, a single
occurrence of pattern B is inserted into a continu-
ous pattern A output.

Internal Alternate The AlternatePattern/Select command controls
which half of the pattern is output. The options
are:
pattern A only (A half)
pattern B only (B half)
alternating A B (AB half)

Oneshot IVI-COM: The BShot command inserts one in-
stance of pattern B into the output.

SCPI: The :APCHange:IBHalf command inserts
one instance of pattern B into the output.

Blanking Alternate The signal at Aux In controls whether output is
generated:
If Aux In=logic high, output is generated.
If Aux In=logic low, no output is generated.
The generated output depends on the Select com-
mand (A Half, B half, AB Half).
42 Agilent Serial BERT, Programming Guide, May 2004

Working With User Patterns Recommended Programming Techniques
Triggering upon Pattern If the trigger mode is Pattern, the trigger is sent according to the
selected pattern.

Depending on the selected pattern, you have the following possibilities
for setting the position of the trigger:

• PRBS and PRBN patterns

You can define the pattern, the occurrence of which sends the
trigger.

• Mark Density and Zero Substitution patterns

You can define the bit position that causes a trigger to be sent.

• User patterns

You can define whether a trigger is sent every time a pattern is sent,
or every time a pattern is changed (for alternate patterns).

Triggering upon Alternate Patterns Alternate patterns are composed of two halves. The half that is sent
out can be defined according to input at the Aux In port, triggered by
the instrument internally, or can be triggered by the user. This is
defined according the mode.

The following graphics shows the dependencies for sending patterns.

User alternate pattern;
Trigger is set with

IAgilentN490xPGTrigger.Patterntype

APAT

IAgilentN490xPGTrigger.Mode

Pattern

IAgilentN490xPGOutput.
SelectData

Trigger sent according to
trigger ratio

(IAgilentN490xPGTrigger.
DivisionRate)

SOUR1:PATT:UPAT0:USE

ZeroSubstitut PRBN MarkDensity File

2n polynomial;
Trigger is set with

IAgilentN490xPGPosition.
Bit

2n polynomial;
Trigger is set with

IAgilentN490xPGPosition.
Bit

2n polynomial;
Trigger is set with

IAgilentN490xPGPosition.
Bit

2n-1 polynomial;
Trigger is set with

IAgilentN490xPGPosition.
SetPattern

PRBS

User straight pattern;
Trigger is set with

IAgilentN490xPGPosition.
Bit

STR

DividedClock

IVI-COM
Agilent Serial BERT, Programming Guide, May 2004 43

Recommended Programming Techniques Working With User Patterns
Working With User Patterns – Procedures

The following topics show you how to set up a program in IVI-COM and
SCPI that does the following:

• Sets up an alternate pattern file and sends it to the pattern
generator and error detector

• Sends triggers according to the input at AUX IN

• Sends a PRBS pattern to the pattern generator and error detector

Working with User Patterns in IVI-COM

Creating Alternate Patterns The following code provides an example of how to set up an alternate
pattern.

Private Sub DefinePatternFile()
' Define the classes;
' myBERT is the already created SerialBERT object
Dim myPG As IAgilentN490xPG
Dim myED As IAgilentN490xED
Dim myPGTrig As IAgilentN490xPGTrigger
Dim myPatternFile As IAgilentN490xPGPatternfile

User alternate pattern;
Trigger is set with

SOUR3:TRIG:APAT<n> ABCH | SOP

APAT

SOUR3:TRIG:MODE

PATTDCL

SOUR1:PATT:SELTrigger sent according to
trigger ratio

(SOUR3:TRIG:DCDR)

SOUR1:PATT:UPAT0:USE

ZSUB PRBN MDEN UPAT

2n polynomial;
Trigger is set with

SOUR3:TRIG:ZSUB<n>

2n polynomial;
Trigger is set with

SOUR3:TRIG:MDEN<n>

2n polynomial;
Trigger is set with

SOUR3:TRIG:PRBN<n>

2n-1 polynomial;
Trigger is set with

SOUR3:TRIG:PRBS<n>

PRBS

User straight pattern;
Trigger is set with

SOUR3:TRIG:UPAT<n>

STR

SCPI
44 Agilent Serial BERT, Programming Guide, May 2004

Working With User Patterns Recommended Programming Techniques
Dim myData1() As String
Dim myData2() As String
Dim ix As Integer

Set myPG = myBERT.PGs.Item("PG1")
Set myED = myBERT.EDs.Item("ED1")
Set myPGTrig = myPG.Trigger
Set myPatternFile = myPG.Patternfiles.Item("PGPatternfile1")

' Set up one array with alternating 1s and 0s
' and one with only 0s
ReDim myData1(32)
ReDim myData2(32)
For ix = 1 To 32

If (ix And 2) = 2 Then
myData1(ix) = "1"

Else
myData1(ix) = "0"

End If
myData2(ix) = "0"

Next

With myPatternFile
' Define the pattern
.Length = 32
.Description = "Test pattern"
.Alternate = True

' Set the pattern's data
.SetData 1, AgilentN490xPGPatternFormatBin, myData1
.SetData 2, AgilentN490xPGPatternFormatBin, myData2

' Error detector should track the pattern generator
myED.Input.DataIns.Item("EDDataIn1"). _

TrackingEnabled = True
' Now send the pattern to the instrument
.SelectData

End With

' And finally send a trigger upon pattern change
myPGTrig.Mode = AgilentN490xPGTriggerModePattern
myPGTrig.Patterntype = AgilentN490xPGTriggerPatterntypeABChange
myPGTrig.Position.Bit = 32
End Sub

Triggering on AUX IN The following example shows how to set up the Serial BERT to send
pattern B upon a rising edge at AUX IN:

Private Sub AlternatePatterns()
' Define the classes;
' myBERT is the already created Serial BERT object
Agilent Serial BERT, Programming Guide, May 2004 45

Recommended Programming Techniques Working With User Patterns
Dim myPG As IAgilentN490xPG
Dim myPGAuxIn As IAgilentN490xPGAuxIn
Dim myPGDataOut As IAgilentN490xPGOutput
Dim myPatternFile As IAgilentN490xPGPatternfile

Set myPG = myBERT.PGs.Item("PG1")
Set myPGAuxIn = myPG.Input.AuxIn
Set myPGOut = myPG.Outputs.Item("PGOutput1")

' Now send the pattern generator's
' pattern file 1 to the pattern generator
Set myPatternFile = myPG.Patternfiles.Item("PGPatternfile1")
myPatternFile.SelectData

' Set the source to be external
myPGAuxIn.Source = AgilentN490xPGAuxInSourceExternal

' We want alternate patterns
myPGAuxIn.AlternatePattern = _

AgilentN490xPGAuxInAlternatePatternABHalf

' With B sent at the rising edge
myPGAuxIn.Mode = AgilentN490xPGAuxInModeREdge

End Sub

PRBS Patterns The following code shows you how to set up a PRBS pattern and send
it to the instrument:

Private Sub UsePRBS()
Dim myPG As IAgilentN490xPG
Dim myPGOut As IAgilentN490xPGOutput
Dim myPGTrig As IAgilentN490xPGTrigger
Dim myPGTrigPos As IAgilentN490xPGPosition
Dim myED As IAgilentN490xED
Dim myPattern() As String
Dim ix As Integer

Set myPG = myBERT.PGs("PG1")
Set myED = myBERT.EDs("ED1")
Set myPGOut = myPG.Outputs.Item("PGOutput1")
Set myPGTrig = myPG.Trigger
Set myPGTrigPos = myPG.Trigger.Position

myED.Input.DataIns.Item("EDDataIn1").TrackingEnabled = True
myPGOut.SelectData AgilentN490xPGOutputSelectPRBN, "7"

' Create an array for the trigger pattern
' We want to trigger on "0011111"
ReDim myPattern(7)
myPattern(1) = "0"
myPattern(2) = "0"
For ix = 3 To 7

myPattern(ix) = "1"
Next
46 Agilent Serial BERT, Programming Guide, May 2004

Working With User Patterns Recommended Programming Techniques
' And set the trigger
myPGTrig.Mode = AgilentN490xPGTriggerModePattern
myPGTrig.Position.SetPattern myPattern
End Sub

Working with User Patterns in SCPI
When creating user patterns in SCPI, it is necessary to format the
data. You can use the PATTern:FORMat[:DATA] command to define
the format for entering the data. This command allows you to define
how the block data should be entered: as standard ASCII data (256
characters), hex data (4 bits per character), or binary data (1s and 0s).

Editing Straight Patterns For user patterns in the STRaight mode, it is recommended that the
following commands be executed in order:

1 Define that a STRaight pattern be used.

SOURce1:PATTern:UPATtern<n>:USE STRaight

2 Set the length of the pattern.

SOURce1:PATTern:UPATtern<n>[:LENGth] <NR1>

3 Define how the data is to be packed.

SOURce1:PATTern:FORMat:DATA PACKed, 1|4|8

4 Define the pattern data.

SOURce1:PATTern:UPATtern<n>:DATA <block data>

Defining a Trigger Note that you can optionally define a trigger for a specific bit in the
pattern:

1 Define the trigger out mode.

SOURce3:TRIGger:MODE PATTern

2 Set the bit on which the trigger is sent.

SOURce3:TRIGger:UPATtern<n> <NR1>

Editing Alternate Patterns For user-patterns in the APATtern mode, it is recommended that the
following commands be executed in order:

1 Define that an Alternate PATtern be used.

SOURce1:PATTern:UPATtern<n>:USE APATtern

2 Define the length of the pattern.

SOURce1:PATTern:UPATtern<n>[:LENGth] <NR1>

3 Define how the data is to be packed.

SOURce1:PATTern:FORMat:DATA PACKed, 1|4|8
Agilent Serial BERT, Programming Guide, May 2004 47

Recommended Programming Techniques Working With User Patterns
4 Define the data in pattern A.

SOURce1:PATTern:UPATtern<n>:DATA A, <block data>

5 Define the data in the pattern B.

SOURce1:PATTern:UPATtern<n>:DATA B, <block data>

Defining a Trigger Note that you can optionally define a trigger when there is a pattern
change:

1 Define the trigger out mode.

SOURce3:TRIGger:MODE PATTern

2 Optionally define a trigger when there is a pattern change.

SOURce3:TRIGger:APATtern<n> ABCHange

Using Alternate Patterns It is recommended that the following commands be executed in order:

1 Select the pattern to be used. This has to be an alternate pattern.

SOURce1:PATTern:SELect UPATtern<n>

2 Define the source for switching.

SOURce1:PATTern:APCHange:SOURce EXTernal | INTernal | BLANking

3 Define the mode for switching.

SOURce1:PATTern:APCHange:MODE
ALTernate | ONEShot | LLEVel | REDGe

4 Use the following command to define which half of the pattern
should be sent.

SOURce1:PATTern:APCHange:SELect AHALf | BHALf | ABHAlf

Examples for Using User Patterns in SCPI

NO TE When the pattern is loaded to the pattern generator, it is also loaded to
the error detector (TRACking ON). Keep in mind that the error
detector can only track pattern A. When pattern B is sent, the error
detector will still expect pattern A.

To set up a user pattern using SCPI:

1 Set the error detector to track the pattern generator (that is, to use
the same pattern).

SENSe1:PATTern:TRACk ON

2 Define the file 'ALT1s0s.ptrn' to be an alternate pattern.

SOURce1:PATTern:UFILe:USE 'ALT1s0s.ptrn', APATtern
48 Agilent Serial BERT, Programming Guide, May 2004

Working With User Patterns Recommended Programming Techniques
3 Define the input data format to be binary (1s and 0s).

SOURce1:PATTern:FORMat:DATA PACKed, 1

4 Set the pattern length to 8 bits.

SOURce1:PATTern:UFILe:LENGth 'ALT1s0s.ptrn', 8

5 Define pattern A.

SOURce1:PATTern:UFILe:DATA A, 'ALT1s0s.ptrn', #1810101010

6 Define pattern B.

SOURce1:PATTern:UFILe:DATA B, 'ALT1s0s.ptrn', #1800000000

7 Load the pattern to the pattern generator.

SOURce1:PATTern:SELect FILENAME, 'ALT1s0s.ptrn'

NOTE When the pattern is loaded to the pattern generator, it is also loaded to
the error detector (TRACking ON). Keep in mind that the error
detector can only track pattern A. When pattern B is sent, the error
detector will still expect pattern A.

Switching at Aux In With these commands, pattern A is sent when the input at Aux In is
low. When the input is high, pattern B is sent.

1 Load the previously defined pattern to the pattern generator.

SOURce1:PATTern:SELect FILename, 'ALT1s0s.ptrn'

2 Select the source for switching patterns to Aux In.

SOURce1:APCHange:SOURce EXTernal

3 Define that alternate patterns should be sent.

SOURce1:APCHange:MODE ALTernate

Generating a Trigger The following commands expand on the previous example. They cause
a a trigger to be generated on the Trigger Out port whenever the user
pattern is changed (from pattern A to pattern B).

1 Define the trigger output mode.

SOURce3:TRIGger:MODE PATTern

2 Set up the trigger for pattern changes.

SOURce3:TRIGger:APATtern ABCHange

Switching on the Rising Edge With these commands, pattern A is sent until a rising edge is detected
at Aux In. When the rising edge is detected, pattern B is sent.

1 Load the pattern to the pattern generator.

SOURce1:PATTern:SELect FILENAME, 'ALT1s0s.ptrn'
Agilent Serial BERT, Programming Guide, May 2004 49

Recommended Programming Techniques Working With User Patterns
2 Set the source for switching patterns to Aux In.

SOURce1:APCHange:SOURce EXTernal

3 Define that pattern B should be sent upon the rising edge.

SOURce1:APCHange:MODe REDGe

Programmatically Switching These commands allow the programmer to manually set which pattern
should be sent.

1 Load the pattern to the pattern generator.

SOURce1:PATTern:SELect FILENAME, 'ALT1s0s.ptrn'

2 Select the source for changing patterns to be internal.

SOURce1:APCHange:SOURce INTernal

3 Define that alternate patterns should be sent.

SOURce1:APCHange:MODE ALTernate

4 Send pattern A continuously.

SOURce1:PATTern:APCHange:SELect AHALf

5 After some event occurs, change to pattern continuous B.

SOURce1:PATTern:APCHange:SELect BHALf

6 And then set up output to automatically alternate between pattern
A and pattern B.

SOURce1:PATTern:APCHange:SELect ABHAlf

Inserting Pattern B These commands allow one instance of pattern B to be inserted into
the output when the Insert B button in the user interface is pressed.

1 Load the pattern to the pattern generator.

SOURce1:PATTern:SELect FILENAME, 'ALT1s0s.ptrn'

2 Select the source for changing patterns to be internal.

SOURce1:PATTern:APCHange:SOURce INTernal

3 Select the mode to insert a single instance of pattern B.

SOURce1:PATTern:APCHange:MODE ONEShot

4 Use Insert B button in GUI or use remote command in order to
insert pattern B in the data output.

SOURce1:PATTern:APCHange:IBHalf ONCe
50 Agilent Serial BERT, Programming Guide, May 2004

SCPI Command Language

The Serial BERT is compatible with the standard language for remote

control of instruments. Standard Commands for Programmable
Instruments (SCPI) is the universal programming language for
instrument control.

SCPI can be subdivided into the following command sets:

• SCPI Common Commands

• SCPI Instrument Control Commands

• IEEE 488.2 Mandatory and Optional Commands

SCPI Common Commands
This is a common command set. It is compatible with IEEE 488.2 and
contains general housekeeping commands. The common commands
are always headed by an asterisk. A typical example is the reset
command: *RST

The IEEE 488.2 command set also contains query commands. Query
commands always end with a question mark.

SCPI Instrument Control Commands
The programming commands are compatible with the Standard
Commands for Programmable Instruments (SCPI) standard. For more
detailed information regarding the GPIB, the IEEE 488.2 standard, or
the SCPI standard, refer to the following books:

• SCPI Consortium. SCPI–Standard Commands for Programmable
Instruments, 1997 (http://www.scpiconsortium.org).

• International Institute of Electrical and Electronics Engineers. IEEE
Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation. New York, NY, 1987.

• International Institute of Electrical and Electronics Engineers. IEEE
Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols and
Common commands For Use with ANSI/IEEE Std 488.1-1987. New
York, NY, 1987.
Agilent Serial BERT, Programming Guide, May 2004 51

SCPI Command Language
IEEE 488.2 Mandatory and Optional Commands
In order to comply with the SCPI model as described in IEEE 488.2,
the Serial BERT implements certain mandatory commands. Other
commands are implemented optionally. For more detail on the IEEE
488.2 mandatory and optional commands, see “Mandatory
Commands” on page 63 and “Optional Commands” on page 68.

Overlapped and Sequential Commands
IEEE 488.2 defines the distinction between overlapped and sequential
commands. A sequential command is one which finishes executing
before the next command starts executing. An overlapped command is
one which does not finish executing before the next command starts
executing.

The Serial BERT has the following overlapped commands:

• SENSe[1]:GATE[:STATe] ON | 1

(when GATE:MODE SINGle)

• SENSe[1]:EYE:TCENter|:TCENter ONCE | ON | 1

• SENSe[1]:EYE:ACENter|:ACENter ONCE | ON | 1

• SENSe[1]:EYE:ALIGn:AUTO ONCE | ON | 1

• SENSe[1]:EYE:QUICk:TCENter ONCE | ON | 1

• SENSe[1]:EYE:QUICk:ACENter ONCE | ON | 1

• SENSe[1]:EYE:QUICk:ALIGN:AUTO ONCE | ON | 1

• SENSe[1]:SYNChronizat ONCE

• SENSe[1]:ELOCation ONCE

NO TE It is not be reliable to use wait statements in the control program to
facilitate the use of overlapped commands.

Because these commands may allow the execution of more than one
command at a time, special programming techniques must be used to
ensure valid results. The common commands *OPC, *WAI, and *OPC?
can be used for this purpose. They help synchronize a device
controller with the execution of overlapped commands.

The behaviors of these commands, in brief, are as follows:

• *OPC

The *OPC command sets the Operation Complete (OPC) bit of the
Standard Event Status Register (SESR) when the No Operation
Pending flag is TRUE (No Operation Pending flag is attached to
52 Agilent Serial BERT, Programming Guide, May 2004

SCPI Command Language
each overlapped command). Until that time, the controller may
continue to parse and execute previous commands. It is good
technique, then, to periodically poll the OPC bit to determine if the
overlapped command has completed.

• *WAI

The *WAI command allows no further execution of commands or
queries until the No Operation Pending flag is true, or receipt of a
Device Clear (dcas) message, or a power on.

• *OPC?

The *OPC? query returns the ASCII character “1” in the Output
Queue when the No Operation Pending flag is TRUE. At the same
time, it also sets the Message Available (MAV) bit in the Status Byte
Register. The *OPC? will not allow further execution of commands
or queries until the No Operation Pending flag is true, or receipt of a
Device Clear (dcas) message, or a power on.

NOTE The command behaviors described above are for overlapped
commands. When the same commands are used with sequential
commands, the behaviors may be different.

Operation Pending Events For the Serial BERT, six conditions can change an operation pending
flag. Notice that the first four correspond to the four overlapped
commands:

• A single timed accumulation period has expired.

• The automatic eye-time-centering operation has expired.

• The automatic eye-amplitude-centering operation has expired.

• An automatic alignment has occurred.

• The requested operation failed.

• The operation was aborted by the user.

Data Types
The Serial BERT has the capability of receiving and returning data in
the following formats:

• STRING

A string of human-readable ASCII characters, either quoted or non-
quoted.

• NUMERIC

The Serial BERT handles three numeric formats:
Agilent Serial BERT, Programming Guide, May 2004 53

SCPI Command Language Important Points about SCPI
– <NR1>: Integer (0, 1, 2, –1, etc.)

– <NR2>: Number with an embedded decimal point (0.1, 0.001. 3.3,
etc.)

– <NR3>: Number with an embedded decimal point and exponent
(1e33, 1.3e–12, etc.)

– Hex preceded by #h (#hff, #hFF, etc.)

• BOOLEAN

Boolean values can be sent to the Serial BERT as either TRUE |
FALSe or 0 | 1. The Serial BERT answers queries with 0 | 1.

• BLOCK DATA

Block data is used when a large quantity of related data is being
returned. A definite length block is suitable for sending blocks of 8-
bit binary information when the length is known beforehand. An
indefinite length block is suitable for sending blocks of 8-bit binary
information when the length is not known beforehand or when
computing the length beforehand is undesirable.

It has the following format:

#<Length of length><Length of data><data>

<Length of length> is a single integer that contains the number of
digits in <Length of data>, which in turn contains the length of the
data. So, for example, a 512-byte pattern would be defined as:

#3512<data>

Important Points about SCPI

There are a number of key areas to consider when using SCPI for the
first time. These are as follows:

• Instrument Model

• Command Syntax

• Optional Parts of Commands

• Sending Commands

• Command Separators

• SCPI Command Structure
54 Agilent Serial BERT, Programming Guide, May 2004

Important Points about SCPI SCPI Command Language
Instrument Model
SCPI guidelines require that the Serial BERT is compatible with an
instrument model. This ensures that when using SCPI, functional
compatibility is achieved between instruments that perform the same
tasks. For example, if two different instruments have a programmable
clock frequency setting, then both instruments would use the same
SCPI commands to set their frequency. The instrument model is made
up of a number of subsystems.

The sub-system defines a group of functions within a module and has
a unique identifier under SCPI, which is called the Root Keyword.

For more details on the instrument model, see “Serial BERT Register
Model” on page 25.

Command Syntax
Commands may be up to twelve characters long. A short-form version
is also available which has a preferred length of four characters or
less. In this document the long-form and short-form versions are
shown as a single word with the short-form being shown in upper-case
letters.

For example, the long-form node command SOURce has the short-form
SOUR. Using the short form saves time when entering a program,
however, using the long form makes a program more descriptive and
easier to understand.

SCPI commands may be commands only, commands and queries, or
queries only. A question mark at the end of a command indicates that
it is a query. If the question mark appears in brackets ([?]), the
command has a command and query form.

Optional Command Keywords
Some layers in the SCPI command structure are optional. These
optional keywords are indicated by square brackets ([]). A typical use
for these types of keywords is with a command that is unique to one
module. In this case, the top layer (Root Keyword) of the command
structure may be omitted.

For example, the following command code segments are functionally
identical:

[SOURce[1]:]PATTern:MDENsity[:DENSity] <numeric value>

SOURce:PATTERN:MDENSITY <numeric value>

PATTern:MDENsity <numeric value>
Agilent Serial BERT, Programming Guide, May 2004 55

SCPI Command Language Important Points about SCPI
PATT:MDEN <numeric value>

patt:mden <numeric value>

Note that it is not necessary to include the syntax inside the square
brackets ([]).

Sending Commands
Commands are sent over the GPIB in the same way that GPIB and
IEEE 488.2 common commands are sent. The difference is that the
SCPI command is “nested” into the programming language of choice.
The programming language of choice may be a language such as Visual
Basic, C++, or SICL.

For an examples of how commands are sent, see “Sending Commands
to the Serial BERT” on page 58.

Querying Responses
It is possible to interrogate the individual settings and status of a
device using query commands. Retrieving data is a two-stage
operation.

The query command is sent from the controller using the OUTPUT
statement and the data is read from the device using the ENTER
statement. A typical example, using the SCPI IEEE 488.2 Common
Command *IDN? which queries the identity of a device.

See “Sending Commands using VISA” on page 58 for an example in
the C programming language of how to query the identity.

NO TE When sending strings to the instrument, either the double quote (“) or
the single quote may be used (‘), the former being more suited to
PASCAL programs, which make use of a single quote; the latter being
more suited to use in BASIC programs, which uses a double quote as a
delimiter. In this manual, the double quote has been used throughout.

Command Separators
The SCPI command structure is hierarchical and is governed by
commas, semi-colons and colons:

• Commas are used to separate parameters in one command.

• Colons are used to separate levels.

• Semi-colons are used to send more than one command to the
instrument at a time.
56 Agilent Serial BERT, Programming Guide, May 2004

Important Points about SCPI SCPI Command Language
SENSe[1]:PATTern:UPATtern<n>:IDATa [A|B,]
<start_bit>, <length_in_bits>,<block_data>

Note that the command hierarchy is indicated by colons and that the
parameters (beginning with [A|B,]), are separated by commas.

Multiple Commands It is possible to send several commands in one pass, as long as the
commands all belong to the same node in the SCPI tree. The
commands have to be separated by semicolons.

The following SCPI commands provide examples of this. Note that the
optional characters and keywords have been removed.

SOURce1:VOLTage:LEVel:IMMediate:OFFSet 1.5
SOURce1:VOLTage:LEVel:IMMediate:AMPLitude 2

These commands can also be sent as follows:

VOLT:OFFS 1.5; AMPL 2.0

SCPI Command Structure Example
The SCPI command structure can be best examined by means of an
example. For example, the command to select the pattern generator’s
pattern is:

[SOURce[1]]:PATTern[:SELect] PRBS7

The structure of this command can be illustrated as follows:

NOTE Any optional commands are enclosed in square brackets [] and any
optional characters are shown in lower case.

A colon indicates a change of level in the command hierarchy.
Commands at the same level in the hierarchy may be included in the
same command line, if separated by a semi-colon.

The bar symbol (|) indicates mutually exclusive commands.

[SOURce [1]:] This is the top layer of the command structure and
identifies the pattern generator source subsystem.

PATTern This is the next layer and defines subnode for setting
up the pattern.

[:SELect] This is the command itself, and is the equivalent of
setting the front panel pattern selection field.

PRBS(n) This is the parameter required by the PATTern
command keyword.
Agilent Serial BERT, Programming Guide, May 2004 57

SCPI Command Language Sending Commands to the Serial BERT
To translate this syntax into a command line, follow the convention
described above. Remember, however, that the command line can be
created in several different ways. It can be created with or without
optional keywords, and in a long or short form. The following example
gives three possible forms of the command line; all are acceptable.

In long form:

SOURce1:PATTern:SELect PRBS7

In short form:

SOUR1:PATT:SEL PRBS7

With the optional commands removed:

PATT PRBS7

The long form is the most descriptive form of programming commands
in SCPI. It is used for the examples in this manual.

Sending Commands to the
Serial BERT

A command is invalid and will be rejected if:

• It contains a syntax error.

• It cannot be identified.

• It has too few or too many parameters.

• A parameter is out of range.

• It is out of context.

Sending Commands using VISA
The following code example shows how to use the VISA library to
connect to the instrument via GPIB. This code also contains
commented examples for USB and LAN.

This example queries the device for the identification string and prints
the results.

#include <visa.h>
#include <stdio.h>
58 Agilent Serial BERT, Programming Guide, May 2004

Sending Commands to the Serial BERT SCPI Command Language
void main () {
ViSession defaultRM, vi;
char buf [256] = {0};

/* Open session to GPIB device at address 14 */
viOpenDefaultRM (&defaultRM);
viOpen (defaultRM, "GPIB0::14::INSTR", VI_NULL,VI_NULL, &vi);

/* Alternatively open a session to the device at
IP address 10.0.1.255 */

/* viOpen (defaultRM,
"TCPIP0::10.0.1.255::INSTR", VI_NULL,VI_NULL, &vi); */

/* Or open a session to the USB device */
/* viOpen (defaultRM,

"usb0[2391::20496::SNN4900AXXXDE::0::INSTR]",
VI_NULL,VI_NULL, &vi); */

/* Or if you have assigned an alias N4901A-Lab */
/* viOpen (defaultRM, "N4901A-Lab", VI_NULL, VI_NULL, &vi); */

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
viScanf (vi, "%t", &buf);

/* Print results */
printf ("Instrument identification string: %s\n", buf);

/* Close session */
viClose (vi);
viClose (defaultRM);

}

This returns the identity string
“AGILENT TECHNOLOGIES,N4901A,3331U00101,A.01.01”.
Agilent Serial BERT, Programming Guide, May 2004 59

SCPI Command Language Sending Commands to the Serial BERT
60 Agilent Serial BERT, Programming Guide, May 2004

SCPI Command Reference

Serial BERT Subsystems

TIP You can use the Output Window in the instrument’s user interface to
monitor the SCPI commands and queries. This can make it easier to
find out which command is responsible for which action.

The SCPI commands are divided into subsystems, which reflect
various functionality of the instrument. The following figure shows
where the port-related subsystems are located.

The SOURce subsystems control output signals (for example, for
defining output patterns and levels). The OUTPut subsystems control
the electrical port connection (for example, to disconnect the port or
set the terminations).

The SENSe subsystems control the expected input signal. They
correspond to the SOURce subsystems. The INPut subsystems
correspond to the OUTPut subsystems; they are responsible for the
electrical port connection.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN TRIG OUT:

SOURce7

CLK OUT:
SOURce2, OUTPut2

CLK IN:
SENSe6

TRIG OUT:
SOURce3

DATA OUT:
SOURce1, OUTPut1

CLK IN:
SENSe2, INPut2

DATA IN:
SENSe1, INPut1
Agilent Serial BERT, Programming Guide, May 2004 61

SCPI Command Reference
NO TE The inverted clock and data outputs track the standard outputs. For
example, the pattern generator’s DATA OUT port tracks the DATA
OUT port. Any changes to the standard output automatically modifies
the inverted output (and vice versa). Therefore, only the commands of
the standard outputs are documented here.

Besides the subsystems shown above, the following subsystems are
available:

• STATus

This subsystem controls the SCPI-compatible status reporting
structures.

IVI-COM Equivalent: IAgilentN490xStatus

• SYSTem

This subsystem controls functions such as general housekeeping
and global configurations.

IVI-COM Equivalent: IAgilentN490xSystem

• TEST

This subsystem verifies specific hardware components for basic
functionality.

IVI-COM Equivalent: IIviDriverUtility.SelfTest

All subsystems commands are described in this chapter.
62 Agilent Serial BERT, Programming Guide, May 2004

IEEE Commands SCPI Command Reference
IEEE Commands

Mandatory Commands

The following mandatory IEEE 488.2 commands are implemented:

*CLS

IVI-COM Equivalent IAgilentN490xStatus.Clear (not IVI-compliant)

Syntax *CLS

Description This command clears all status data structures in a device. For the
Serial BERT, these registers include:

Execution of *CLS also clears any additional status data structures
implemented in the device. The corresponding enable registers are
unaffected.

See “Serial BERT Register Model” on page 25 for more information
about the Status Byte.

Name Description under

*CLS “*CLS” on page 63

*ESE[?] “*ESE[?]” on page 64

*ESR? “*ESR?” on page 64

*IDN? “*IDN?” on page 64

*OPC “*OPC” on page 65

*OPC? “*OPC?” on page 65

*RST “*RST” on page 66

*SRE[?] “*SRE[?]” on page 67

*STB? “*STB?” on page 67

*TST? “*TST?” on page 67

*WAI “*WAI” on page 68

SESR IEEE 488.2

OPERation
Status Register

SCPI

QUEStionable
Status Register

SCPI
Agilent Serial BERT, Programming Guide, May 2004 63

SCPI Command Reference IEEE Commands
*ESE[?]

Syntax *ESE <Num.>

*ESE?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Description

The Standard Event Status Enable Command (*ESE) sets the Standard
Event Enable Register. This register acts like a mask, so that the next
time a selected bit goes high, the ESB bit in the status byte is set. See
“Serial BERT Register Model” on page 25 for details.

For example, if bit 0 is set in the Standard Event Enable Register, then
when the OPC bit in the Standard Event register goes true, the ESB
summary bit is set in the Status Byte.

The query (*ESE?) returns the contents of the Standard Event Enable
Register.

*ESR?

IVI-COM Equivalent IAgilentN490xStatus.SerialPoll (not IVI-compliant)

Syntax *ESR?

Description This query interrogates the Standard Event Status Register. The
register is cleared after it is read.

*IDN?

IVI-COM Equivalent IIviDriverIdentity (IVI-compliant)

Syntax *IDN?

Description For the Serial BERT, the Identification Query (*IDN?) response
semantics are organized into four fields, separated by commas. The
field definitions are as follows:

Field Value

Manufacture Agilent Technologies

Model N4906A

Serial Number DExxxxxxxx

Firmware Level A.x.x.xxx
64 Agilent Serial BERT, Programming Guide, May 2004

IEEE Commands SCPI Command Reference
*OPC

Syntax *OPC

Description A device is in the Operation Complete Command Active State (OCAS)
after *OPC has been executed. The device returns to the Operation
Complete Command Idle State (OCIS) whenever the No Operation
Pending flag is TRUE, while at the same time setting the OPC bit of the
ESR TRUE.

The following events force the device into OCIS without setting the No
Operation Pending flag to TRUE and without setting the OPC bit of the
ESR:

• power on

• receipt of a DCAS message (device clear)

• execution of *CLS

• execution of *RST

Implementation of the *OPC command is straightforward in devices
that implement only sequential commands. When executing *OPC, the
device simply sets the OPC bit of the ESR.

In devices that implement overlapped commands, the implementation
of *OPC is more complicated. After executing *OPC, the device must
not set the OPC bit of ESR until the device returns to OCIS, even
though it continues to parse and execute commands.

NOTE For the Serial BERT, *OPC can be used with overlapped commands.
For more information, see “Overlapped and Sequential Commands”
on page 52.

*OPC?

IVI-COM Equivalent IAgilentN490xSystem.WaitForOperationComplete (not IVI-compliant)

Syntax *OPC? Command

Description A device is in the Operation Complete Query Active State (OQAS) after
it has executed *OPC?. The device returns to the Operation Complete
Query Idle State (OQIS) whenever the No Operation Pending flag is
TRUE, at the same time placing a “1” in the Output Queue.
Agilent Serial BERT, Programming Guide, May 2004 65

SCPI Command Reference IEEE Commands
The following events force the device into OQIS without setting the No
Operation Pending flag TRUE and without placing a “1” in the Output
Queue:

• power on

• receipt of the dcas message (device clear)

Implementation of the *OPC? query is straightforward in devices
which implement only sequential commands. When executing *OPC?
the device simply places a “1” in the Output Queue.

The implementation of overlapped commands in a device complicates
the implementation of *OPC? and places some restrictions on the
implementation of the Message Exchange Protocol (MEP). IEEE 488.2
dictates that devices shall send query responses in the order that they
receive the corresponding queries. Although IEEE 488.2 recommends
that *OPC? be the last query in a program message, there is nothing to
prevent a controller program from ignoring this suggestion. This is
why *OPC? must be sequential.

NO TE For the Serial BERT, *OPC(?) can be used with overlapped commands.
For more information, see “Overlapped and Sequential Commands”
on page 52.

*RST

IVI-COM Equivalent IIviDriverUtility.Reset (IVI-compliant)

Syntax *RST

Description The Reset Command (*RST) sets the device-specific functions to a
known state that is independent of the past-use history of the device.
The command has the same effect as the front-panel PRESET key.

In addition, receipt of *RST by the error detector will cause all past
results to be reset to zero.
66 Agilent Serial BERT, Programming Guide, May 2004

IEEE Commands SCPI Command Reference
*SRE[?]

IVI-COM Equivalent IAgilentN490xStatus.ConfigureServiceRequest (not IVI-compliant)

Syntax *SRE <Num.>

*SRE?

Description The Service Request Enable Command (*SRE) sets the Service Request
Enable Register. This acts as a mask on the Status Byte, defining when
the instrument can issue a service request. For a service request to be
issued, the summary bit in the Status Byte must match the bit in the
Service Request Enable Register. More than one bit may be set by the
*SRE command.

The query returns the current contents of the Service Request Enable
Register.

 See “Serial BERT Register Model” on page 25 for details.

*STB?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax *STB?

Description The Read Status Byte Query (*STB?) allows the programmer to read
the status byte and Master Summary Status bit. When the status byte
is read using the *STB command, bit 6 of the status byte is referred to
as the Master Summary (MSS) bit. With this query, the status byte is
not cleared when the value is read. It always reflects the current
status of all the instrument’s status registers.

 See “Serial BERT Register Model” on page 25 for details.

*TST?

IVI-COM Equivalent IIviDriverUtility.SelfTest (not IVI-compliant)

Syntax *TST?

Description The self-test query starts all internal self-tests and places a response
into the output queue indicating whether or not the device completed
the self-tests without any detected errors. It returns a 0 for success; a 1
if a failure was detected.
Agilent Serial BERT, Programming Guide, May 2004 67

SCPI Command Reference IEEE Commands
Upon successful completion of *TST?, the device settings are restored
to their values prior to the *TST?

For more precise self-test results, use “TEST:EXECute?” on page 181.

*WAI

Syntax *WAI

Description The *WAI commands allows no further execution of commands or
queries until the No Operation Pending flag is true, or receipt of a
Device Clear (dcas) message, or a power on.

The *WAI command can be used for overlapped commands. It stops
the program execution until any pending overlapped commands have
finished. Specifically, it waits until the No Operation Pending flag is
TRUE, or receipt of a dcas message, or a power on.

Optional Commands

The following optional IEEE 488.2 commands are implemented:

*OPT?

Syntax *OPT?

Description The Option Identification query is for identifying reportable device
options over the system interface.

This is a standard SCPI command. Please refer to the SCPI
specification for details.

Command Description

*OPT? Option Identification Query

*PSC Power On Status Clear Command

*PSC? Power On Status Clear Query

*RCL Recall device setup

*SAV Save device setup
68 Agilent Serial BERT, Programming Guide, May 2004

IEEE Commands SCPI Command Reference
*PSC

Syntax *PSC

Description The Power-on Status Clear command controls the automatic power-on
clearing of the Service Request Enable Register, the Standard Event
Status Enable Register, and the Parallel Poll Enable Register.

This is a standard SCPI command. Please refer to the SCPI
specification for details.

*RCL

IVI-COM Equivalent IAgilentN490xSystem.RecallState (IVI-compliant)

Syntax *RCL <numeric value | string>

Description This command loads the setup from a numbered store or from a full
path filename that was previously stored with “*SAV” on page 69. The
range of store numbers is 0 through 9.

In addition, upon receipt of *RCL, the error detector will reset all past
results to zero.

NOTE Depending on the patterns that are saved with the setup, the
instrument may require up to half a minute to settle. See
“Determining if Conditions have Settled” on page 21 for details.

*SAV

IVI-COM Equivalent IAgilentN490xSystem.SaveState (IVI-compliant)

Syntax *SAV <numeric value | string>

Description This command saves the current instrument setup into a numbered
store or into a full path filename. The range of store numbers is 0
through 9. The “*RCL” on page 69 restores the setup.

The setup saves the currently used patterns, signal definitions, and
other user interface settings.
Agilent Serial BERT, Programming Guide, May 2004 69

SCPI Command Reference SOURce[1] Subsystem
SOURce[1] Subsystem

The SOURce[1] subsystem controls the pattern generator’s Data Out

port.

This subsystem has the following SCPI structure:

This subsystem has the following commands and subnodes:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

DATA OUT:
SOURce1, OUTPut1

[:SOURce[1]:]

:VOLTage

. . .

PATTern

. . .

:PM

[STATe][?]

Name Description under

Commands

:PM “[SOURce[1]]:PM[:STATe][?]” on page 71

Subnodes

:PATTern “[SOURce[1]]:PATTern Subnode” on page 71

:VOLTage “[SOURce[1]]:VOLTage Subnode” on page 89
70 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PM[:STATe][?]

IVI-COM Equivalent IAgilentN490xPGDelayControlInput.Enabled (not IVI-compliant)

Syntax [SOURce[1]]:PM:STATe ON | OFF | 0 | 1

[SOURce[1]]:PM:STATe?

IVI-COM Equivalent Agt8613xBERT.PatternGenerator.DataOutput

Description Enables/disables delay control input. The query returns the state of
the delay control input (0 | 1).

[SOURce[1]]:PATTern Subnode

This subnode has the following SCPI structure:

This subnode has the following commands and subnodes:

[:SOURce[1]:]

PATTern

:APCHange

. . .

:EADDition[?]

:RATE[?]

:SOURce[?]

:FORMat

[:DATA][?]

:MDENsity

[:DENSity]

[:SELect][?]

:UFILe

. . .

:UPATtern

. . .

:ZSUBstitut[:ZRUN][?]

Name Description under

Commands

:EADDition[?] “[SOURce[1]]:PATTern:EADDition[?]” on
page 72

:EADDition:RATE[?] “[SOURce[1]]:PATTern:EADDition:RATE[?]” on
page 73
Agilent Serial BERT, Programming Guide, May 2004 71

SCPI Command Reference SOURce[1] Subsystem
[SOURce[1]]:PATTern:EADDition[?]

Syntax [SOURce[1]]:PATTern:EADDition <EADD>

[SOURce[1]]:PATTern:EADDition?

Input Parameters <EADD> ONCE | 0 | 1 | OFF | ON

Return Range 0 | 1

Description This command is a contraction of the phrase Error ADDition. It is
used to control the addition of errors into the generated pattern.

The parameter ONCe causes a single bit error to be added to the
pattern. It depends on the previous status of this command and the
selected source (see “[SOURce[1]]:PATTern:EADDition:SOURce[?]” on
page 73). The following table lists the dependencies:

The query returns the current state of error addition.

:EADDition:SOURce[?] “[SOURce[1]]:PATTern:EADDition:SOURce[?]”
on page 73

:FORMat[:DATA][?] “[SOURce[1]]:PATTern:FORMat[:DATA][?]” on
page 73

:MDENsity[:DENSity][?] “[SOURce[1]]:PATTern:MDENsity[:DENSity][?]
” on page 74

[:SELect][?] “[SOURce[1]]:PATTern[:SELect][?]” on
page 74

:ZSUBstitut[:ZRUN][?] “[SOURce[1]]:PATTern:ZSUBstitut[:ZRUN][?]”
on page 76

Subnodes

:APCHange “[SOURce[1]]:PATTern:APCHange Subnode”
on page 77

:UFILe “[SOURce[1]]:PATTern:UFILe Subnode” on
page 80

:UPATtern<n> “[SOURce[1]]:PATTern:UPATTern Subnode”
on page 85

Name Description under

:EADD :EADD:SOUR :EADD ONCe

0 EXT Active

FIX Active

1 EXT Active

FIX Not active (command has no effect)
72 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PATTern:EADDition:RATE[?]

Syntax [SOURce[1]]:PATTern:EADDition:RATE <RATE> 10^(–3, –4,… –9)

[SOURce[1]]:PATTern:EADDition:RATE?

Return Range 10^(–3, –4,… –9)

Description The command controls the rate of internal fixed error addition. Values

between 103 and 109 in decade steps are permitted.

The query returns the current error add rate.

[SOURce[1]]:PATTern:EADDition:SOURce[?]

Syntax [SOURce[1]]:PATTern:EADDition:SOURce EXTernal | FIXed

[SOURce[1]]:PATTern:EADDition:SOURce?

Return Range EXT | FIX

Description The command controls the source of injected errors:

• EXTernal (and :EADDition[:STATe] is ON)

Each pulse at the Error Add port causes an error to be added to the
data stream.

• FIXed (and :EADDition[:STATe] is ON)

Repetitive errors are internally added to the data stream. The rate
of error addition is controlled by the :EADDition:RATE command.

The query returns the current error addition mode.

[SOURce[1]]:PATTern:FORMat[:DATA][?]

IVI-COM Equivalent Included in IAgilentN490xPGPatternfile.SetData (IVI-compliant)

Syntax [SOURce[1]]:PATTern:FORMat:DATA <PACKed>, <Num.>

[SOURce[1]]:PATTern:FORMat:DATA?

Input Parameters <PACKed> permits the packing of bits within a byte to be set.

<NR1> Can be 1, 4, or 8.

Return Range 1 | 4 | 8
Agilent Serial BERT, Programming Guide, May 2004 73

SCPI Command Reference SOURce[1] Subsystem
Description The command controls the format of data transfer for the
:PATTern:UPATtern<n>:DATA, :PATTern:UPATtern<n>:IDATa,
:PATTern:UFILe:DATA and :PATTern:UFILe:IDATa commands. The
following values are possible:

• 1

The data is sent as a string of 1s and 0s.

• 4

The data is sent as a string of hex characters.

• 8

The data is sent as a string of full ASCII characters.

The query returns the current value of the data pack.

See “Working with User Patterns in SCPI” on page 47 for descriptions
on how to use the data packing.

[SOURce[1]]:PATTern:MDENsity[:DENSity][?]

IVI-COM Equivalent IAgilentN490xPGOutput.MarkDensity (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:MDENsity[:DENSity] <Num.>

[SOURce[1]]:PATTern:MDENsity[:DENSity]?

Input Parameters <NR2> 0.125, 0.25, 0.5, 0.75, 0.875

Description The command sets the ratio of high bits to the total number of bits in
the pattern. The ratio may be varied in eighths, from one to seven
(eighths), but excluding three and five.

The query returns the mark density in eighths.

[SOURce[1]]:PATTern[:SELect][?]

IVI-COM Equivalent IAgilentN490xPGOutput.SelectData (IVI-compliant)

Syntax [SOURce[1]]:PATTern[:SELect] <Source>

[SOURce[1]]:PATTern[:SELect]?

Input Parameters <Source> PRBS<n> | PRBN<n> | ZSUBstitut<n> | MDENsity<n> |
UPATtern<n> | FILename, <string>

Return Range PRBS<n> | PRBN<n> | ZSUB<n> | MDEN<n> | UPAT
74 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
Description This command defines the type of pattern being generated. The
parameter is retained for backwards compatibility and may be one of
the following:

ZSUBstitut Zero SUBstitution; used for defining PRBN patterns in
which a block of bits is replaced by a block of zeros. The length of the
block is defined by “[SOURce[1]]:PATTern:ZSUBstitut[:ZRUN][?]” on
page 76.

MDENsity Mark DENsity; used for defining a PRBN pattern in
which the user can set the mark density. The mark density is set with
“[SOURce[1]]:PATTern:MDENsity[:DENSity][?]” on page 74.

UPATtern<n> User PATtern; used to define the contents of a
pattern store. For the Serial BERT, <n> can be 1 – 12.

FILename A parameter that allows the remote user to load a user
pattern from the instrument’s disk drive. This is the preferred
mechanism for loading user patterns in the Serial BERT.

NOTE If the pattern generator and error detector are coupled, setting the
pattern by using the SOURce1:PATTern:SELect command will cause
the pattern to be set in both the pattern generator and the error
detector. If the pattern generator and error detector are not coupled,
then the error detector pattern must be selected using the
SENSe[1]:PATTern:SELect command.

The query form returns the pattern’s types in short form.

NOTE If a user-defined pattern is selected and the [:SELECT]? command is
used, the response is UPAT. The particular value of <n> or the name of
the file specified in the command form is not returned.

To get the path of a user pattern file, use the UFILe:NAME? command.

PRBS<n> <n> = 7, 10, 11, 15, 23, 31

PRBN<n> <n> = 7, 10,11,13, 15, 23

ZSUBstitut<n> <n> = 7, 10,11,13, 15, 23

UPATtern<n> <n> = 1 through 12

MDENsity<n> <n> = 7, 10,11,13, 15, 23

FILename, <string>
Agilent Serial BERT, Programming Guide, May 2004 75

SCPI Command Reference SOURce[1] Subsystem
[SOURce[1]]:PATTern:ZSUBstitut[:ZRUN][?]

IVI-COM Equivalent IAgilentN490xPGOutput.ZeroSub (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:ZSUBstitut[:ZRUN] MINimum | MAXimum |
<numeric value>

[SOURce[1]]:PATTern:ZSUBstitut[:ZRUN]?

Return Range <NR3>

Description ZSUB patterns are PRBN patterns, where a number of bits are
replaced by zeroes. The zero substitution starts after the longest runs
of zeroes in the pattern (for example, for PRBN 2^7, after the run of 7
zeroes). This command allows you to define the length of the run of
zeroes. For example, to produce 10 zeroes in a PRBN 2^7 pattern,
three additional bits after the run of 7 zeroes must be replaced by
zeroes. The bit after the run of zeroes (the closing bit) is set to 1.

The following figure shows an example, where a run of 10 zeroes is
inserted into a PRBN 2^7 pattern.

This command is only active when a ZSUB pattern has been selected
(see “[SOURce[1]]:PATTern[:SELect][?]” on page 74).

Range The minimum value is the PRBN value. The maximum value is length
of the pattern – 1. So, for a PRBN 2^7 pattern, the minimum value is 7,
and the maximum value is 127 (2^7 – 1).

*ZRUNRun of 0s

0000000 101000100

0000001000000 110PRBN

ZSUB

* Closing bit
76 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PATTern:APCHange Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

[SOURce[1]]:PATTern:APCHange:IBHalf

IVI-COM Equivalent IAgilentN490xPGAuxIn.BShot (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:APCHange:IBHalf ONCe

Description This command is short for Insert B Half. It causes the insertion of a
number of instances of pattern B. It is valid only when
:APCHange:SOURce is set to INTernal and :APCHange:MODE is set to
ONEShot. It is an event command, and as such has no query form.

Pattern B is repeated as necessary to reach the next 512-bit boundary
in the memory. So, for example, if pattern B is 4 bits long, it is
repeated 128 times. Or if it is 7 bits long, it is repeated 512 times.

See “How the Serial BERT Uses Alternate Patterns” on page 40 for
more information.

[SOURce[1]:]

:PATTern

:APCHange

:IBHalf

:MODE[?]

:SELect[?]

:SOURce[?]

Name Description under

:IBHalf “[SOURce[1]]:PATTern:APCHange:IBHalf” on
page 77

:MODE[?] “[SOURce[1]]:PATTern:APCHange:MODE[?]”
on page 78

:SELect[?] “[SOURce[1]]:PATTern:APCHange:SELect[?]”
on page 79

:SOURce[?] “[SOURce[1]]:PATTern:APCHange:SOURce[?]
” on page 79
Agilent Serial BERT, Programming Guide, May 2004 77

SCPI Command Reference SOURce[1] Subsystem
[SOURce[1]]:PATTern:APCHange:MODE[?]

IVI-COM Equivalent IAgilentN490xPGAuxIn.Mode (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:APCHange:MODE <MODE>

[SOURce[1]]:PATTern:APCHange:MODE?

Input Parameters <MODE>. ALTernate | ONEShot | LLEVel | REDGe

Return Range ALT | ONES | LLEV | REDG

*RST Setting ALTernate

Description This command controls the mode of operation of the alternate pattern
output. The query returns the current mode of operation.

The parameters have the following meanings:

• ALTernate

Alternate patterns are used. The pattern that is output must be
defined with “[SOURce[1]]:PATTern:APCHange:SELect[?]” on
page 79.

• ONEShot

A single instance of pattern B is inserted into the output stream.
This can be triggered either programmatically (with
“[SOURce[1]]:PATTern:APCHange:IBHalf” on page 77, or from the
user interface (with the Insert B button).

• LLEVel

The output pattern is determined by the level of the signal at the
Aux In port.

• REDGe

The output pattern is determined by the rising edge of the signal at
the Aux In port.

NO TE This command must be used together with the
“[SOURce[1]]:PATTern:APCHange:SELect[?]” on page 79 and
“[SOURce[1]]:PATTern:APCHange:SOURce[?]” on page 79.

For instructions on how to use these commands, refer to “How the
Serial BERT Uses Alternate Patterns” on page 40.
78 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PATTern:APCHange:SELect[?]

IVI-COM Equivalent IAgilentN490xPGAuxIn.AlternatePattern (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:APCHange:SELect AHALf | BHALf | ABHalf

[SOURce[1]]:PATTern:APCHange:SELect?

Return Range AHAL | BHAL | ABH

*RST Setting AHALf

Description This command defines what pattern is output. It is only applicable to
ALTernate patterns. The following options are available:

• AHALf

Only pattern A is output.

• BHALf

Only pattern B is output.

• ABHalf

Pattern A and pattern B are sent alternatively (one instance A, one
instance B, and so on).

This command must be used together with the
“[SOURce[1]]:PATTern:APCHange:MODE[?]” on page 78 and
“[SOURce[1]]:PATTern:APCHange:SOURce[?]” on page 79.

For instructions on how to use these commands, refer to “How the
Serial BERT Uses Alternate Patterns” on page 40.

The selection ABHalf is new for the Serial BERT.

[SOURce[1]]:PATTern:APCHange:SOURce[?]

IVI-COM Equivalent IAgilentN490xPGAuxIn.Source (not IVI-compliant)

Syntax [SOURce[1]]:PATTern:APCHange:SOURce EXTernal | INTernal |
BLANking

[SOURce[1]]:PATTern:APCHange:SOURce?

Return Range EXT | INT | BLAN

*RST Value EXTernal
Agilent Serial BERT, Programming Guide, May 2004 79

SCPI Command Reference SOURce[1] Subsystem
Description This command defines how the Serial BERT determines the pattern to
be output. The following alternatives are available:

• INTernal

Alternate pattern output is determined internally by the instrument
(for example, from the user interface or SCPI commands).

• EXTernal

Alternate pattern output is determined by the signal at Aux In. This
can either be edge-sensitive or level-sensitive.

• BLANking

Output can be shut off according to the level at Aux In. If Aux In
high, output is generated, if Aux In low, no output.

The query returns the current control of the alternate pattern output.

NO TE This command must be used together with the
“[SOURce[1]]:PATTern:APCHange:MODE[?]” on page 78 and
“[SOURce[1]]:PATTern:APCHange:SELect[?]” on page 79.

For instructions on how to use these commands, refer to “How the
Serial BERT Uses Alternate Patterns” on page 40.

[SOURce[1]]:PATTern:UFILe Subnode

This subnode has the following SCPI structure:

[SOURce[1]:]

PATTern

:UFILe

:DATA[?]

:IDATa[?]

[:LENGth][?]

:LABel[?]

:NAME?

:USE[?]
80 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
This subnode has the following commands:

[SOURce[1]]:PATTern:UFILe:DATA[?]

IVI-COM Equivalent IAgilentN490xLocalPatternfile.SetData (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:DATA [A|B,] <filename>, <block data>

[SOURce[1]]:PATTern:UFILe:DATA? [A|B,] <filename>

Return Range The query returns the standard (A) or alternate pattern (B) of the file
found under <filename>.

Description This command is used to set the bits in user pattern files. See
“Working with User Patterns in SCPI” on page 47 for a detailed
description on how to edit user patterns.

The parameters have the following meanings:

<block data> The <block data> parameter contains the actual data for setting the
bits of the user pattern. The bits can also be packed using the
FORMat[:DATA] command. If the bits are not packed, they are handled
as 8-bit data. See “[SOURce[1]]:PATTern:FORMat[:DATA][?]” on
page 73.

Name Description under

:DATA[?] “[SOURce[1]]:PATTern:UFILe:DATA[?]” on
page 81

:IDATa[?] “[SOURce[1]]:PATTern:UFILe:IDATa” on
page 82

[:LENGth][?] “[SOURce[1]]:PATTern:UFILe[:LENGth][?]” on
page 83

:LABel[?] “[SOURce[1]]:PATTern:UFILe:LABel[?]” on
page 84

:NAME? “[SOURce[1]]:PATTern:UFILe:NAME?” on
page 84

:USE[?] “[SOURce[1]]:PATTern:UFILe:USE[?]” on
page 84

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B =
alternate pattern). If the pattern file describes a standard pattern (:USE =
STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<block data> The data that describes the pattern (see the following for the
description).
Agilent Serial BERT, Programming Guide, May 2004 81

SCPI Command Reference SOURce[1] Subsystem
This command also sets the pattern length to fit the length of the data:
If the data block is longer than the pattern, the pattern is extended to
fit the data; if the data block is shorter than the pattern, the pattern is
truncated to the end of the data.

<block data> starts with a header that indicates the length of the
desired resulting data. The length of the <block data> embedded in the
header always refers to the length of the data block in bytes.

For example, consider the following header:

#19<data>

For non-packed data (or 8-bit packed data), the <block data> required
to set an 8-bit pattern of alternating 1s and 0s (01010101) would be:

#11U (Note that “U” is the ASCII representation of 85)

For 4-bit packed data, the <block data> required to set the same
pattern would be:

#1255

For 1-bit packed data, the <block data> would be as follows:

#1801010101

[SOURce[1]]:PATTern:UFILe:IDATa

IVI-COM Equivalent IAgilentN490xLocalPatternfile.SetDataBlock (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:IDATa [A | B,] <filename>, <start_bit>,
<length_in_bits>, <block_data>

[SOURce[1]]:PATTern:UFILe:IDATa? [A | B,] <filename>, <start_bit>,
<length_in_bits>

Return Range The query returns the selected bits of the standard (A) or alternate (B)
pattern of the file found under <filename>.

Description This command is used to set specific bits in a user pattern. It is similar
to the :DATA command. The :IDATa command is a contraction of the
phrase Incremental DATa and is used to download part of a user-
defined pattern.

Start of the header.

1 Number of decimal digits to follow to form the length.

9 Length of the data block (in bytes) that follows.

<data> The pattern data, packed according the the
DATA:PACKed command.
82 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
The parameters have the following meanings:

The use of the parameters can be best illustrated by an example. If we
have an alternate 16-bit pattern of 0s only, and we want to set the last
four bits to 1s, the IDATa command would appear as follows:

• If the data packing is 8:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #11(&F0)
(where (&F0) is replaced by the ASCII representation of the value)

• If the data packing is 4:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #11F

• If the data packing is 1:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #141111

The response form returns <block data> at the specified location.

NOTE See “Working with User Patterns in SCPI” on page 47 for more
information on using this command.

[SOURce[1]]:PATTern:UFILe[:LENGth][?]

IVI-COM Equivalent IAgilentN490xLocalPatternfile.Length (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe[:LENGth] <filename>, <numeric_value>

[SOURce[1]]:PATTern:UFILe[:LENGth]? <filename>

Description This command sets the length of a user pattern file. The query returns
the length of the user pattern file. If an alternate pattern is selected
(:USE APATtern), the LENGth command sets the length of each half of
the pattern.

Note that the :DATA command automatically sets the length of the file.

See “Working with User Patterns in SCPI” on page 47 for information
on using this command.

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B
= alternate pattern). If the pattern file describes a standard pattern
(:USE = STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<start bit> First bit to be overwritten (starting with 0).

<length_in_bits> Number of bits to be overwritten.

<block data> The data that describes the pattern (see
“[SOURce[1]]:PATTern:UFILe:DATA[?]” on page 81 for the description).
Agilent Serial BERT, Programming Guide, May 2004 83

SCPI Command Reference SOURce[1] Subsystem
[SOURce[1]]:PATTern:UFILe:LABel[?]

IVI-COM Equivalent IAgilentN490xLocalPatternfile.Description (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:LABel <filename>, <string>

[SOURce[1]]:PATTern:UFILe:LABel? <filename>

Description This command sets a description for a user pattern file. The query
returns the description. See “Working with User Patterns in SCPI” on
page 47 for information on using this command.

[SOURce[1]]:PATTern:UFILe:NAME?

IVI-COM Equivalent IAgilentN490xLocalPatternfile.Location (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:NAME?

Description This query returns the file name of the currently used user pattern. It
is only valid if SOURce1:PATTern:SELect? returns UPAT.

[SOURce[1]]:PATTern:UFILe:USE[?]

IVI-COM Equivalent IAgilentN490xLocalPatternfile.Alternate (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:USE <filename>, STRaight | APATtern

[SOURce[1]]:PATTern:UFILe:USE? <filename>

Return Range STR | APAT

Description This command defines whether a user pattern file should be a straight
pattern or an alternate pattern:

• STRaight

The pattern is repeatedly output.

• APATtern

The pattern is composed of two halves. The output depends on
various other commands; see “How the Serial BERT Uses Alternate
Patterns” on page 40 for more information.

The default is set to have a length of 128 bits for each half pattern; all
bits are set to zero and the trigger is set to occur on the A/B
changeover. See “Working with User Patterns in SCPI” on page 47 for
information on using this command.
84 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PATTern:UPATTern Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

NOTE For the UPATtern<n> commands, <n> can be in the range 0 – 12. 0
(zero) is used to select the current pattern, 1 – 12 selects one of the
user patterns in the memory.

[SOURce[1]]:PATTern:UPATtern<n>[:LENGth][?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.Length (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UPATtern<n>[:LENGth] <numeric value>

[SOURce[1]]:PATTern:UPATtern<n>[:LENGth]?

Description This command sets the length of the selected user pattern. The query
returns the length of the user pattern. If an alternate pattern is
selected (:USE APATtern), the LENGth command sets the length of
each half of the pattern.

[SOURce[1]:]

:PATTern

:UPATtern<n>

[:LENGth][?]

:LABel[?]

:USE[?]

:DATA[?]

:IDATa[?]

Name Description under

[:LENGth][?] “[SOURce[1]]:PATTern:UPATtern<n>[:LENGth
][?]” on page 85

:LABel[?] “[SOURce[1]]:PATTern:UPATtern<n>:LABel[?]
” on page 86

:USE[?] “[SOURce[1]]:PATTern:UPATtern<n>:USE[?]”
on page 86

:DATA[?] “[SOURce[1]]:PATTern:UPATtern<n>:DATA[?]
” on page 87

:IDATa[?] “[SOURce[1]]:PATTern:UPATtern<n>:IDATa[?]
” on page 88
Agilent Serial BERT, Programming Guide, May 2004 85

SCPI Command Reference SOURce[1] Subsystem
Note that the :DATA command automatically sets the length of the
pattern.

See “Working with User Patterns in SCPI” on page 47 for information
on using this command.

[SOURce[1]]:PATTern:UPATtern<n>:LABel[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.Description (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UPATtern<n>:LABel <string>

[SOURce[1]]:PATTern:UPATtern<n>:LABel?

Description The command sets the description of the pattern. The query returns
the description of the pattern.

See “Working with User Patterns in SCPI” on page 47 for information
on using this command.

[SOURce[1]]:PATTern:UPATtern<n>:USE[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.Alternate (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UPATtern<n>:USE STRaight | APATtern

[SOURce[1]]:PATTern:UPATtern<n>:USE?

Return Range STR | APAT

Description This command defines whether a user pattern file should be a straight
pattern or an alternate pattern:

• STRaight

The pattern is repeatedly output.

• APATtern

The pattern is composed of two halves. The output depends on
various other commands; see “How the Serial BERT Uses Alternate
Patterns” on page 40 for more information.

The default is set to have a length of 128 bits for each half pattern; all
bits are set to zero and the trigger is set to occur on the A/B
changeover. See “Working with User Patterns in SCPI” on page 47 for
information on using this command.
86 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:PATTern:UPATtern<n>:DATA[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.SetData (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UPATtern<n>:DATA [A | B,] <block_data>

[SOURce[1]]:PATTern:UPATtern<n>:DATA? [A|B,]

Return Range The query returns the block data for pattern A or pattern B.

Description This command is used to set the bits in user pattern files. See
“Working with User Patterns in SCPI” on page 47 for a detailed
description on how to edit user patterns.

The parameters have the following meanings:

<block data> The <block data> parameter contains the actual data for setting the
bits of the user pattern. The bits can also be packed using the
FORMat[:DATA] command. If the bits are not packed, they are handled
as 8-bit data. See “[SOURce[1]]:PATTern:FORMat[:DATA][?]” on
page 73.

This command also sets the pattern length to fit the length of the data:
If the data block is longer than the pattern, the pattern is extended to
fit the data; if the data block is shorter than the pattern, the pattern is
truncated to the end of the data.

<block data> starts with a header that indicates the length of the
desired resulting data. The length of the <block data> embedded in the
header always refers to the length of the data block in bytes.

For example, consider the following header:

#19<data>

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B =
alternate pattern). If the pattern file describes a standard pattern (:USE =
STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<block data> The data that describes the pattern (see the following for the
description).

Start of the header.

1 Number of decimal digits to follow to form the length.

9 Length of the data block (in bytes) that follows.

<data> The pattern data, packed according the the
DATA:PACKed command.
Agilent Serial BERT, Programming Guide, May 2004 87

SCPI Command Reference SOURce[1] Subsystem
For non-packed data (or 8-bit packed data), the <block data> required
to set an 8-bit pattern of alternating 1s and 0s (01010101) would be:

#11U (Note that “U” is the ASCII representation of 85)

For 4-bit packed data, the <block data> required to set the same
pattern would be:

#1255

For 1-bit packed data, the <block data> would be as follows:

#1801010101

[SOURce[1]]:PATTern:UPATtern<n>:IDATa[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.SetDataBlock (IVI-compliant)

Syntax [SOURce[1]]:PATTern:UFILe:IDATa [A | B,] <start bit>,
<length in bits>, <block data>

[SOURce[1]]:PATTern:UFILe:IDATa? [A|B,] <start bit>,
<length in bits>

Return Range The query returns the selected bits of the standard (A) or alternate (B)
pattern.

Description This command is used to set specific bits in a user pattern. It is similar
to the :DATA command. The :IDATa command is a contraction of the
phrase Incremental DATa and is used to download part of a user-
defined pattern.

The parameters have the following meanings:

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B
= alternate pattern). If the pattern file describes a standard pattern
(:USE = STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<start bit> First bit to be overwritten (starting with 0).

<length_in_bits> Number of bits to be overwritten.

<block data> The data that describes the pattern (see
“[SOURce[1]]:PATTern:UFILe:DATA[?]” on page 81 for the description).
88 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
The use of the parameters can be best illustrated by an example. If we
have an alternate 16-bit pattern of 0s only, and we want to set the last
four bits to 1s, the IDATa command would appear as follows:

• If the data packing is 8:

SOURce1:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #11(&F0)
(where (&F0) is replaced by the ASCII representation of the value)

• If the data packing is 4:

SOURce1:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #11F

• If the data packing is 1:

SOURce1:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #141111

The response form returns <block data> at the specified location.

NOTE See “Working with User Patterns in SCPI” on page 47 for more
information on using this command.

[SOURce[1]]:VOLTage Subnode

This subnode has the following SCPI structure:

[SOURce[1]:]

:VOLTage

:ECL

[:LEVel]

[:IMMediate]

[:AMPLitude][?]

:HIGH[?]

:LOW[?]

:OFFSet[?]

:LLEVel[?]
Agilent Serial BERT, Programming Guide, May 2004 89

SCPI Command Reference SOURce[1] Subsystem
This subnode has the following commands:

[SOURce[1]]:VOLTage:ECL

IVI-COM Equivalent IAgilentN490xPGOutput.LogicLevel (not IVI-compliant)

Syntax [SOURce[1]]:VOLTage:ECL

Description This command sets the data output values to those used for the ECL
family. Retained for backwards compatibility. Superseded by
SOURce1:VOLTage:LLEVel (see
“[SOURce[1]]:VOLTage[:LEVel]:LLEVel[?]” on page 91).

[SOURce[1]]:VOLTage[:LEVel][:IMMediate][:AMPLitude]
[?]

IVI-COM Equivalent IAgilentN490xPGOutVoltage.VAmplitude (IVI-compliant)

Syntax [SOURce[1]]:VOLTage[:LEVel][:IMMediate][:AMPLitude] <Num.>

[SOURce[1]]:VOLTage[:LEVel][:IMMediate][:AMPLitude]?

Description The command sets the peak-to-peak value of the data signal in units of
Volts. The query returns the peak-to-peak value of the data signal in
units of Volts.

Name Description under

:ECL “[SOURce[1]]:VOLTage:ECL” on page 90

[:LEVel][:IMMediate][:AMPLitude][?] “[SOURce[1]]:VOLTage[:LEVel][:IMMediate][:
AMPLitude][?]” on page 90

[:LEVel][:IMMediate]:HIGH[?] “[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:H
IGH[?]” on page 91

[:LEVel][:IMMediate]:LOW[?] “[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:L
OW[?]” on page 91

[:LEVel][:IMMediate]:OFFSet[?] “[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:O
FFSet[?]” on page 91

[:LEVel]:LLEVel[?] “[SOURce[1]]:VOLTage[:LEVel]:LLEVel[?]” on
page 91
90 Agilent Serial BERT, Programming Guide, May 2004

SOURce[1] Subsystem SCPI Command Reference
[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:HIGH[?]

IVI-COM Equivalent IAgilentN490xPGOutVoltage.VHigh (IVI-compliant)

Syntax [SOURce[1]]:VOLTage[:LEVel][:IMMediate]:HIGH <Num.>

[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:HIGH?

Description The command sets the DC low output level in units of Volts. The query
returns the DC low output level in units of Volts.

[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:LOW[?]

IVI-COM Equivalent IAgilentN490xPGOutVoltage.VLow (IVI-compliant)

Syntax [SOURce[1]]:VOLTage[:LEVel][:IMMediate]:LOW <Num.>

[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:LOW?

Description The command sets the DC low output level in units of Volts. The query
returns the DC low output level in units of Volts.

[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:OFFSet[?]

IVI-COM Equivalent IAgilentN490xPGOutVoltage.VOffset (IVI-compliant)

Syntax [SOURce[1]]:VOLTage[:LEVel][:IMMediate]:OFFSet <Num.>

[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:OFFSet?

Description The command sets the mean of the high and low DC output level in
units of Volts. The query returns the mean of the high and low DC
output level in units of Volts.

[SOURce[1]]:VOLTage[:LEVel]:LLEVel[?]

IVI-COM Equivalent IAgilentN490xPGOutput.LogicLevel (not IVI-compliant)

Syntax [SOURce[1]]:VOLTage[:LEVel]:LLEVel <Family>

[SOURce[1]]:VOLTage[:LEVel]:LLEVel?

Input Parameters <Family> ECL | LVPECL | SCFL | LVDS | CML | CUSTom

Return Range ECL | LVPECL | SCFL | LVDS | CML | CUST
Agilent Serial BERT, Programming Guide, May 2004 91

SCPI Command Reference SOURce[1] Subsystem
NO TE Selecting CUSTom has no effect.

Description The command sets the output level appropriate for the specified logic
family. The query returns the currently used logic family.

NO TE If any of the voltage parameters have been modified, CUSTom will be
returned by the query, even if the parameter has been set back to the
default.
92 Agilent Serial BERT, Programming Guide, May 2004

OUTPut[1] Subsystem SCPI Command Reference
OUTPut[1] Subsystem

The Output[1] subsystem represents the pattern generator’s Data Out

port.

This subsystem has the following SCPI structure:

This subsystem has the following commands:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

DATA OUT:
SOURce1, OUTPut1

:CENTer

OUTPut[1]

:COUPling[?]

:DATA

:XOVer[?]

:DELay[?]

:POLarity[?]

[:STATe][?]

:TERMination[?]

Name Description under

:CENTer “OUTPut[1]:CENTer” on page 94

:COUPling[?] “OUTPut[1]:COUPling” on page 94

:DATA:XOVer[?] “OUTPut[1]:DATA:XOVer[?]” on page 94

:DELay[?] “OUTPut[1]:DELay[?]” on page 94

:POLarity[?] “OUTPut[1]:POLarity[?]” on page 95

[:STATe][?] “OUTPut[1][:STATe][?]” on page 95

:TERMination[?] “OUTPut[1]:TERMination[?]” on page 95
Agilent Serial BERT, Programming Guide, May 2004 93

SCPI Command Reference OUTPut[1] Subsystem
OUTPut[1]:CENTer

IVI-COM Equivalent IAgilentN490xPGGlobal.OutputsDisconnect (not IVI-compliant)

Syntax OUTPut[1]:CENTer DISConnect | CONNect

Description The DISConnect command sets the voltage at the pattern generator’s
Data Out port to 0 V, the CONNect command “reenables” the output
(to the normal data pattern).

OUTPut[1]:COUPling

IVI-COM Equivalent IAgilentN490xPGOutput.TerminationEnabled (IVI-compliant)

Syntax OUTPut[1]:COUPling AC | DC

OUTPut[1]:COUPling?

Description The command enables or disables the source of the termination
voltage:

• DC: Enables the termination voltage

• AC: Disables the termination voltage

The query returns the current state.

OUTPut[1]:DATA:XOVer[?]

IVI-COM Equivalent IAgilentN490xPGOutput.Crossover (IVI-compliant)

Syntax OUTPut[1]:DATA:XOVer <NR1.>

OUTPut[1]:DATA:XOVer? [MINimum | MAXimum]

The command sets the eye crossover of the pattern generator’s Data
Out port.

The query returns the current crossover.

OUTPut[1]:DELay[?]

IVI-COM Equivalent IAgilentN490xPGOutput.Delay (IVI-compliant)

Syntax OUTPut[1]:DELay <Num.>

OUTPut[1]:DELay?
94 Agilent Serial BERT, Programming Guide, May 2004

OUTPut[1] Subsystem SCPI Command Reference
Description This command sets the delay of the active edge of the clock output
relative to the pattern generator’s Data Out port. The units are
seconds. The value is rounded to the nearest one picosecond. The
response returns the current data to clock delay value.

This command has restrictions for frequencies under 620 Mbits/s. See
the Serial BERT User Guide (or online Help) for details.

OUTPut[1]:POLarity[?]

IVI-COM Equivalent IAgilentN490xPGOutput.Polarity (IVI-compliant)

Syntax OUTPut[1]:POLarity NORMal | INVerted

OUTPut[1]:POLarity?

Return Range NORM | INV

Description The command sets the polarity of the pattern generator’s Data Out
port. The query returns the current polarity of the the pattern
generator’s Data Out port.

OUTPut[1][:STATe][?]

IVI-COM Equivalent IAgilentN490xPGOutput.Enabled (IVI-compliant)

Syntax OUTPut[1][:STATe] 0 | 1 | OFF | ON

OUTPut[1][:STATe]?

NOTE It is not possible to disable the Serial BERT’s output. This command
has no effect.

OUTPut[1]:TERMination[?]

IVI-COM Equivalent IAgilentN490xPGOutVoltage.VTermination (IVI-compliant)

Syntax OUTPut[1]:TERMination <NR3>

OUTPut[1]:TERMination?

Description This command sets the data termination level of the pattern
generator’s Data Out port. The response form returns the data
termination level.

This command is only valid if the coupling is set to DC (see
“OUTPut[1]:COUPling” on page 94).
Agilent Serial BERT, Programming Guide, May 2004 95

SCPI Command Reference SOURce9 Subsystem
SOURce9 Subsystem

The SOURce9 Subsystem represents the pattern generator’s Clock Out

port.

This subsystem has the following SCPI structure:

SOURce9:FREQuency[:CW|FIXed][?]

IVI-COM Equivalent IAgilentN490xPGClock.Frequency (IVI-compliant)

Syntax SOURce9:FREQuency[:CW|:FIXed] <Num.>

SOURce9:FREQuency[:CW|:FIXed]? <Num.>| <MIN | MAX>

Description This command may be used to configure the internal clock source
frequency. You can also use any of the forms listed below:

• SOURce9:FREQuency

• SOURce9:FREQuency:CW

• SOURce9:FREQuency:FIXed

There is no difference between any of these forms.

The response returns the current internal clock source frequency.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK OUT:
SOURce2, OUTPut2

SOURce9

:FREQuency

[:CW|:FIXed][?]
96 Agilent Serial BERT, Programming Guide, May 2004

SOURce2 Subsystem SCPI Command Reference
SOURce2 Subsystem

The SOURce2 Subsystem represents the pattern generator’s Clock Out
port.

This subsystem has the following SCPI structure:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK OUT:
SOURce2, OUTPut2

SOURce2

:FREQuency

[:CW|:FIXed]?

:VOLTage

:ECL

[:LEVel]

[:IMMediate]

[:AMPLitude][?]

:HIGH[?]

:LOW[?]

:OFFSet[?]

:LLEVel
Agilent Serial BERT, Programming Guide, May 2004 97

SCPI Command Reference SOURce2 Subsystem
This subsystem has the following commands:

SOURce2:FREQuency[:CW|:FIXed]?

IVI-COM Equivalent IAgilentN490xPGClockIn.GetFrequency (IVI-compliant)

Syntax SOURce2:FREQuency[:CW|:FIXed]? [MIN|MAX]

Description This query returns the bit rate of the measured frequency from
internal or external clock.

NO TE This query is superseded by SENSe6:FREQuency [:CW|:FIXed]?

SOURce2:VOLTage:ECL

IVI-COM Equivalent IAgilentN490xPGClock.LogicLevel (not IVI-compliant)

Syntax SOURce2:VOLTage:ECL

Description Sets the output AMPLitude and HIGH values to those used for the ECL
family. There is no query form for this command. This command is
provided for backwards compatibility only and is superseded by
SOURce2:VOLTage:LLEVel (see “SOURce2:VOLTage:LLEVel[?]” on
page 100).

Name Description under

:FREQuency[:CW|FIXed]? “SOURce2:FREQuency[:CW|:FIXed]?” on
page 98

:VOLTage:ECL “SOURce2:VOLTage:ECL” on page 98

:VOLTage[:LEVEL][:IMMediate]
[:AMPLitude][?]

“SOURce2:VOLTage[:LEVel][:IMMediate][:AM
PLitude][?]” on page 99

:VOLTage[:LEVEL][:IMMediate]:HIGH[?] “SOURce2:VOLTage[:LEVel][:IMMediate]:HIG
H[?]” on page 99

:VOLTage[:LEVEL][:IMMediate]:LOW[?] “SOURce2:VOLTage[:LEVel][:IMMediate]:LOW
[?]” on page 99

:VOLTage[:LEVEL][:IMMediate]:OFFSet[?] “SOURce2:VOLTage[:LEVel][:IMMediate]:OFF
Set[?]” on page 99

:VOLTage[:LEVEL]:LLEVel “SOURce2:VOLTage:LLEVel[?]” on page 100
98 Agilent Serial BERT, Programming Guide, May 2004

SOURce2 Subsystem SCPI Command Reference
SOURce2:VOLTage[:LEVel][:IMMediate][:AMPLitude][?]

IVI-COM Equivalent IAgilentN490xPGClockVoltage.VAmplitude (IVI-compliant)

Syntax SOURce2:VOLTage [:LEVel][:IMMediate][:AMPLitude] <Num.>

SOURce2:VOLTage [:LEVel][:IMMediate][:AMPLitude]?

Description The command sets the peak to peak value of the Clock Out signal in
units of Volts. The query returns the peak to peak value of the Clock
signal in units of Volts.

SOURce2:VOLTage[:LEVel][:IMMediate]:HIGH[?]

IVI-COM Equivalent IAgilentN490xPGClockVoltage.VHigh (IVI-compliant)

Syntax SOURce2:VOLTage[:LEVel][:IMMediate]:HIGH <Num.>

SOURce2:VOLTage[:LEVel][:IMMediate]:HIGH?

Description The command sets the DC high output level of the pattern generator’s
Clock Out port in Volts. The query returns the DC high output level of
the pattern generator’s Clock Out port in Volts.

SOURce2:VOLTage[:LEVel][:IMMediate]:LOW[?]

IVI-COM Equivalent IAgilentN490xPGClockVoltage.VLow (IVI-compliant)

Syntax SOURce2:VOLTage[:LEVel][:IMMediate]:LOW <Num.>

SOURce2:VOLTage[:LEVel][:IMMediate]:LOW?

The command sets the DC low output level of the pattern generator’s
Clock Out port in Volts. The query returns the DC low output level of
the pattern generator’s Clock Out port in Volts.

SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet[?]

IVI-COM Equivalent IAgilentN490xPGClockVoltage.VOffset (IVI-compliant)

Syntax SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet <Num.>

SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet?

Description The command sets the offset value of the pattern generator’s Clock
Out port in Volts. The query returns the offset value of the pattern
generator’s Clock Out port in Volts.
Agilent Serial BERT, Programming Guide, May 2004 99

SCPI Command Reference OUTPut2 Subsystem
SOURce2:VOLTage:LLEVel[?]

IVI-COM Equivalent IAgilentN490xPGClockVoltage.LogicLevel (not IVI-compliant)

Syntax SOURce2:VOLTage:LLEVel <Family>

SOURce2:VOLTage:LLEVel?

Input Parameters <Family>. ECL | LVPECL | SCFL | LVDS | CML | CUSTom

NO TE Selecting CUSTom has no effect.

Return Range ECL | LVPECL | SCFL | LVDS | CML | CUSTom

Description The command sets the output level appropriate for the specified logic
family. The query returns the currently used logic family.

NO TE If any of the voltage parameters have been modified, CUSTom will be
returned by the query, even if the parameter has been set back to the
default.

OUTPut2 Subsystem

The OUTPut2 Subsystem represents the pattern generator’s Clock Out

port.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK OUT:
SOURce2, OUTPut2
100 Agilent Serial BERT, Programming Guide, May 2004

OUTPut2 Subsystem SCPI Command Reference
This subsystem has the following SCPI structure:

This subsystem has the following commands:

OUTPut2:CENTer

IVI-COM Equivalent IAgilentN490xPGGlobal.OutputsDisconnect (not IVI-compliant)

Syntax OUTPut2:CENTer DISConnect | CONNect

Description The DISConnect command sets the voltage at the pattern generator’s
Data Out port to 0 V, the CONNect command “reenables” the output
(to the normal data pattern).

OUTPut2:COUPling[?]

Syntax OUTPut2:COUPling AC | DC

OUTPut2:COUPling?

Description The command enables or disables the source of the termination
voltage:

• DC: Enables the termination voltage

• AC: Disables the termination voltage

The query returns the current state.

:CENTer

OUTput2

:COUPling[?]

[:STATe][?]

:TERMination[?]

Name Description under

:CENTer “OUTPut2:CENTer” on page 101

:COUPling[?] “OUTPut2:COUPling[?]” on page 101

[:STATe][?] “OUTPut2[:STATe][?]” on page 102

:TERMination[?] “OUTPut2:TERMination[?]” on page 102
Agilent Serial BERT, Programming Guide, May 2004 101

SCPI Command Reference OUTPut2 Subsystem
OUTPut2[:STATe][?]

Syntax OUTPut2[:STATe] 0 | 1 | OFF | ON

OUTPut2[:STATe]?

Description The command controls the the pattern generator’s Clock Out port.
When OFF, the output is set to 0 V. The query returns the current state
of the Clock Out (0 = OFF, 1 = ON).

NO TE It is not possible to disable the Serial BERT’s output. This command
has no effect.

OUTPut2:TERMination[?]

Syntax OUTPut2:TERMination 0 | –2 | 1.3

OUTPut2:TERMination?

Description This command sets the data termination level of the pattern
generator’s Clock Out port. The response form returns the data
termination level.

This command is only valid if the coupling is set to DC (see
“OUTPut2:COUPling[?]” on page 101).
102 Agilent Serial BERT, Programming Guide, May 2004

SOURce3 Subsystem SCPI Command Reference
SOURce3 Subsystem

The SOURce3 Subsystem represents the pattern generator’s Trigger

Out port.

This subsystem has the following SCPI structure:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

TRIG OUT:
SOURce3

SOURce3

:TRIGger

[:MODE][?]

:DCDRatio

:CTDRatio?

:APATtern<n>[?]

:MDENsity<n>[?]

:PRBN<n>[?]

:PRBS<n>[?]

:UPATtern<n>

:ZSUBstitut<n>[?]
Agilent Serial BERT, Programming Guide, May 2004 103

SCPI Command Reference SOURce3 Subsystem
This subsystem has the following commands:

NO TE See “How Serial BERT Sends Triggers” on page 42 for details about
trigger signals are generated.

SOURce3:TRIGger[:MODe][?]

IVI-COM Equivalent IAgilentN490xPGTrigger.Mode (IVI-compliant)

Syntax SOURce3:TRIGger[:MODE] DCLock | PATTern

SOURce3:TRIGger[:MODE]?

Return Range DCL | PATT

Description The command sets the pattern generator’s Trigger Out to pattern or
divided clock mode. The query returns the pattern generator’s current
Trigger Out mode.

SOURce3:TRIGger:DCDRatio

IVI-COM Equivalent IAgilentN490xPGTrigger.DivisionRate (IVI-compliant)

Syntax SOURce3:TRIGger:DCDRatio

Description The command sets the trigger subratio. CTDRatio? is the equivalent
query.

Name Description under

:TRIGger[:MODe][?] “SOURce3:TRIGger[:MODe][?]” on page 104

:TRIGger:DCDRatio “SOURce3:TRIGger:DCDRatio” on page 104

:TRIGger:CTDRatio “SOURce3:TRIGger:CTDRatio?” on page 105

:TRIGger:APATtern<n>[?] “SOURce3:TRIGger:APATtern<n>[?]” on
page 105

:TRIGger:MDENsity<n>[?] “SOURce3:TRIGger:MDENsity<n>[?]” on
page 106

:TRIGger:ZSUBstitut<n>[?] “SOURce3:TRIGger:ZSUBstitut<n>[?]” on
page 106

:TRIGger:PRBN<n>[?] “SOURce3:TRIGger:PRBN<n>[?]” on
page 106

:TRIGger:PRBS<n>[?] “SOURce3:TRIGger:PRBS<n>[?]” on page 107

:TRIGger:UPATtern<n> “SOURce3:TRIGger:UPATtern<n>” on
page 107
104 Agilent Serial BERT, Programming Guide, May 2004

SOURce3 Subsystem SCPI Command Reference
SOURce3:TRIGger:CTDRatio?

IVI-COM Equivalent IAgilentN490xPGTrigger.DivisionRate (IVI-compliant)

Syntax SOURce3:TRIGger:CTDRatio

Description This query returns the trigger subratio. DCDRatio is the equivalent
command.

SOURce3:TRIGger:APATtern<n>[?]

IVI-COM Equivalent IAgilentN490xPGTrigger.Patterntype (not IVI-compliant)

Syntax SOURce3:TRIGger:APATtern<n> ABCHange | SOPattern

SOURce3:TRIGger:APATtern<n>?

NOTE This command is for alternate patterns only.

Return Range ABCH | SOP

Description This command defines when a trigger should be sent from the pattern
generator’s Trigger Out port:

ABChange: The trigger is sent when the pattern being sent changes
(from pattern A to pattern B or vice versa).

SOPattern: The pattern generator Trigger Out is synchronized to
the start of a pattern.

The query returns the current state of the alternate pattern trigger
mode.

NOTE See “How the Serial BERT Uses Alternate Patterns” on page 40 for
additional information on how to work with alternate patterns.
Agilent Serial BERT, Programming Guide, May 2004 105

SCPI Command Reference SOURce3 Subsystem
SOURce3:TRIGger:MDENsity<n>[?]

IVI-COM Equivalent IAgilentN490xPGPosition.Bit (not IVI-compliant)

Syntax SOURce3:TRIGger:MDENsity<n> <Num.>

SOURce3:TRIGger:MDENsity<n>?

Description This command selects the bit position within the PRBS at which the
trigger pulse is to be output for MDEN patterns. The number <n> must
be in the range: 7, 10, 11, 13, 15, 23. The parameter <Num> must be in
the range 0 through pattern length – 1.

The query returns the bit position within the pattern at which the
trigger pulse is to be output.

SOURce3:TRIGger:ZSUBstitut<n>[?]

IVI-COM Equivalent IAgilentN490xPGPosition.Bit (not IVI-compliant)

Syntax SOURce3:TRIGger:ZSUBstitut<n> <Num.>

SOURce3:TRIGger:ZSUBstitut<n>?

Description This command selects the bit position within the zero substituted 2^n
PRBS at which the trigger pulse is to be output for ZSUB patterns. The
number <n> must be in the range: 7, 10, 11, 13, 15, 23. The parameter
<Num> must be in the range 0 through pattern length – 1.

The query returns the bit position within the pattern at which the
trigger pulse is to be output.

SOURce3:TRIGger:PRBN<n>[?]

IVI-COM Equivalent IAgilentN490xPGPosition.Bit (not IVI-compliant)

Syntax SOURce3:TRIGger:PRBN<n> <Num.>

SOURce3:TRIGger:PRBN<n>?

Description This command selects the bit position within the PRBS at which the
trigger pulse is to be output for PRBN patterns. The number <n> must
be in the range: 7, 10, 11, 13, 15, 23. The parameter <Num> must be in
the range 0 through pattern length – 1.

The query returns the bit position within the pattern at which the
trigger pulse is to be output.
106 Agilent Serial BERT, Programming Guide, May 2004

SOURce3 Subsystem SCPI Command Reference
SOURce3:TRIGger:PRBS<n>[?]

IVI-COM Equivalent IAgilentN490xPGPosition.SetPattern (not IVI-compliant)

Syntax SOURce3:TRIGger:PRBS<n> <0 | 1 | OFF | ON>{,<0 | 1 | OFF | ON>}

SOURce3:TRIGger:PRBS<n>?

Description This command sets the pattern, the occurrence of which causes a
trigger pulse to be output for PRBS patterns. In other words, when the
defined pattern occurs, a trigger pulse is generated.

The number <n> must be in the range: 7, 10, 11, 15, 23, 31. The number
of parameters depends on the pattern length, and is the minimum that
can define a unique place in the overall pattern, for example a pattern

of length 2n-1, the number of parameters is n. The parameter values
are either 1 or 0. An all-ones pattern is not allowed.

To generate a trigger pulse for a PRBS7 pattern on occurrence of
1010101, the following command would be sent:

SOUR3:TRIG:PRBS7 1,0,1,0,1,0,1

The query returns the state of the N-bit trigger pattern function for the
pattern generator’s Trigger Out.

SOURce3:TRIGger:UPATtern<n>

IVI-COM Equivalent IAgilentN490xPGPosition.Bit (not IVI-compliant)

Syntax SOURce3:TRIGger:UPATtern<n> <Num.>

SOURce3:TRIGger:UPATtern<n>?

Description The command selects a bit position within the user pattern at which
the trigger pulse is to be output for user patterns. The parameter must
be in the range of 0 through pattern length – 1.

The response returns the current bit position within the user pattern
at which the trigger pulse is generated.
Agilent Serial BERT, Programming Guide, May 2004 107

SCPI Command Reference SENSe6 Subsystem
SENSe6 Subsystem

The SENSe6 Subsystem represents the pattern generator’s Clock In

port.

This subsystem has the following SCPI structure:

This subsystem has the following commands:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK IN:
SENSe6

SENSe6

:FREQuency

[:CW | :FIXed]

:MODe

Name Description under

:FREQuency[:CW|:FIXed][?] “SENSe6:FREQuency[:CW|:FIXed]?” on
page 109

:MODe “SENSe6:MODe” on page 109
108 Agilent Serial BERT, Programming Guide, May 2004

SENSe6 Subsystem SCPI Command Reference
SENSe6:FREQuency[:CW|:FIXed]?

IVI-COM Equivalent IAgilentN490xPGClockIn.GetFrequency (IVI-compliant)

Syntax SENSe6:FREQuency [:CW | :FIXed]?

Description This query returns the frequency of the signal at the pattern
generator’s Clock In port. You may also use the following forms of this
query:

• SENSe6:FREQ?

• SENSe6:FREQ:CW?

• SENSe6:FREQ:FIXed?

There is no difference between any of these forms.

NOTE This command supersedes the following 716xxB command:

• SOURce2:FREQuency[:CW | :FIXed]? <Num.>

SENSe6:MODe

IVI-COM Equivalent IAgilentN490xPGClockIn.Mode (IVI-compliant)

Syntax SENSe6:MODe

Description This command sets the mode of the pattern generator’s Clock In port.
It can be one of the following:

• INTernal

This is the Serial BERT’s internal clock.

• EXTernal

This is the clock signal at the CLK IN port.

• REFerence (10-MHz Reference clock)

This is the clock signal at the 10 MHz Ref port.
Agilent Serial BERT, Programming Guide, May 2004 109

SCPI Command Reference INPut[1] Subsystem
INPut[1] Subsystem

The INPut[1] subsystem represents the error detector’s Data In port.

This subsystem has the following SCPI structure:

This subsystem has the following commands:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

DATA IN:
SENSe1, INPut1

INPut[1]

:COUPling[?]

:DELay[?]

:POLarity[?]

:TERMination[?]

:STATe[?]

:CMODe[?]

Name Description under

:COUPling[?] “INPut[1]:COUPling[?]” on page 111

:DELay[?] “INPut[1]:DELay[?]” on page 111

:POLarity[?] “INPut[1]:POLarity[?]” on page 111

:TERMination[?] “INPut[1]:TERMination[?]” on page 112

:STATe[?] “INPut[1]:STATe[?]” on page 112

:CMODe[?] “INPut[1]:CMODe[?]” on page 112
110 Agilent Serial BERT, Programming Guide, May 2004

INPut[1] Subsystem SCPI Command Reference
INPut[1]:COUPling[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.TerminationEnabled (IVI-compliant)

Syntax INPut[1]:COUPling AC | DC

INPut[1]:COUPling?

Description The command enables or disables the source of the termination
voltage:

• DC: Enables the termination voltage

• AC: Disables the termination voltage

The query returns the current state.

NOTE Non-differential operation of the error detector’s Data In port requires
a termination voltage.

INPut[1]:DELay[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.Delay (IVI-compliant)

Syntax INPut[1]:DELay <Num.>

INPut[1]:DELay?

Description This command sets the delay of the active edge of the clock output
relative to the error detector’s Data In port. The units are seconds. The
value is rounded to the nearest one picosecond. The response returns
the current data to clock delay value.

This command has restrictions for frequencies under 620 Mbits/s. See
the Serial BERT User Guide (or online Help) for details.

INPut[1]:POLarity[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.Polarity (IVI-compliant)

Syntax INPut[1]:POLarity NORMal|INVerted

INPut[1]:POLarity?

Description The command sets the polarity of the error detector’s Data In port.

The query returns the current polarity of the the error detector’s Data
In port.
Agilent Serial BERT, Programming Guide, May 2004 111

SCPI Command Reference INPut[1] Subsystem
INPut[1]:TERMination[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.VTermination (IVI-compliant)

Syntax INPut[1]:TERMination <NR3>

INPut[1]:TERMination?

Description This command sets the data termination level of the error detector’s
Data In port. The response form returns the data termination level.

This command is only valid if the coupling is set to DC (see
“INPut[1]:COUPling[?]” on page 111).

If input termination and 0/1 threshold level are to be set up, the input
termination should be set up first.

INPut[1]:STATe[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.Enabled (IVI-compliant)

Syntax INPut[1]:STATe ON | OFF | 0 | 1

Description Enables or disables normal data input.

NO TE It is not possible to disable the Serial BERT’s input. This command has
no effect.

INPut[1]:CMODe[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.Mode (IVI-compliant)

Syntax INPut[1]:CMODe DIFFerential | NORMal | COMPlement

INPut[1]:CMODe?

Description Defines the Compare MODe; this defines which input ports (DATA or
DATA) are active.

The following options are available:

• DIFFerential

The differential between DATA and DATA is measured.

• NORMal

Only the inputs at the DATA are measured.

• COMPlement

Only the inputs at the DATA are measured.
112 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1] Subsystem

The SENSe[1] subsystem represents the error detector’s Data In port.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

DATA IN:
SENSe1, INPut1
Agilent Serial BERT, Programming Guide, May 2004 113

SCPI Command Reference SENSe[1] Subsystem
This subsystem has the following SCPI structure:

[:CW | :FIXED][?]

MODe[?]

SENSe[1]

:EYE

. . .

:GATE

. . .

:LOGGing[?]

:FILename[?]

:PATTern

. . .

:SYNChronizat[?]

:THReshold[?]

:VOLTage

. . .

:FREQuency

:AUXout

:ELOCation[?]

:BLOCk

. . .

. . .
114 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
This subsystem has the following subnodes and commands:

SENSe[1]:LOGGing[?]

IVI-COM Equivalent IAgilentN490xEDLogging.Enabled (IVI-compliant)

Syntax SENSe[1]:LOGGing 0 | 1 | OFF | ON

SENSe[1]:LOGGing?

Description This command allows you to save accumulated results in a file for later
analysis. The query form returns whether or not the accumulated
results will be saved in a log file.

NOTE This command is not precisely the same as 716xxB command. The
ONCE parameter is no longer supported.

Name Description under

Commands

:LOGGing[?] “SENSe[1]:LOGGing[?]” on page 115

:LOGGing:FILename[?] “SENSe[1]:LOGGing:FILename[?]” on
page 116

:SYNChronization[?] “SENSe[1]:SYNChronizat[?]” on page 116

:SYNChronization:THReshold[?] “SENSe[1]:SYNChronization:THReshold[?]”
on page 116

:FREQuency[:CW|:FIXed][?] “SENSe[1]:FREQuency[:CW|:FIXed][?]” on
page 117

:AUXout:MODe[1][?] “SENSe[1]:AUXout:MODe[?]” on page 117

Subnodes

:BLOCk “SENSe[1]:BLOCk Subnode” on page 118

:ELOCation “SENSe[1]:ELOCation Subnode” on page 121

:EYE “SENSe[1]:EYE Subnode” on page 123

:GATE “SENSe[1]:GATE Subnode” on page 129

:PATTern “SENSe[1]:PATTern Subnode” on page 133

:VOLTage “SENSe[1]:VOLTage Subnode” on page 146
Agilent Serial BERT, Programming Guide, May 2004 115

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:LOGGing:FILename[?]

IVI-COM Equivalent IAgilentN490xEDLogging.Filename (IVI-compliant)

Syntax SENSe[1]:LOGGing:FILename <Filename>

SENSe[1]:LOGGing:FILename?

Description This command specifies the file to which logged data is sent. The
query returns the filename to which the logged data is sent.

You have to explicitly enable logging with SENSe[1]:LOGGing.

SENSe[1]:SYNChronizat[?]

IVI-COM Equivalent IAgilentN490xEDSynchronisation.AutoEnabled (IVI-compliant)

Syntax SENSe[1]:SYNChronizat ONCE | 0 | 1 | OFF | ON

SENSe[1]:SYNChronizat?

Description These commands configure the settings that control synchronization
of the reference pattern to the incoming pattern.

• SENSe[1]:SYNChronizat ON enables automatic resynchronization.

• SENSe[1]:SYNChronizat OFF disables automatic resynchronization.

• SENSe[1]:SYNChronizat ONCE initiates a resynchronization
attempt.

The query returns the current selection of the pattern
synchronization.

SENSe[1]:SYNChronization:THReshold[?]

IVI-COM Equivalent IAgilentN490xEDSynchronisation.Threshold (IVI-compliant)

Syntax SENSe[1]:SYNChronization:THReshold

SENSe[1]:SYNChronization:THReshold?

Description SENSe[1]:SYNChronizat:THReshold <Num.>

SENSe[1]:SYNChronizat:THReshold?

This command sets the threshold level of error ratio at which
synchronization is successful.

NO TE The valid values are 1E–01 thru 1E–08 in decade steps.
116 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
The query returns the threshold level of error ratio at which
synchronization is set.

SENSe[1]:FREQuency[:CW|:FIXed][?]

IVI-COM Equivalent IAgilentN490xEDCDR.Frequency (not IVI-compliant)

Syntax SENSe[1]:FREQuency[:CW|:FIXed]

SENSe[1]:FREQuency[:CW|:FIXed]?

Description This command sets the clock frequency for clock data recovery. You
can also use any of the forms listed below:

• SENSe[1]:FREQuency?

• SENSe[1]:FREQuency:CW?

• SENSe[1]:FREQuency:FIXed?

These forms have the same effect.

The query returns the clock frequency for clock data recovery.

SENSe[1]:AUXout:MODe[?]

IVI-COM Equivalent IAgilentN490xEDAuxOut.Mode (not IVI-compliant)

Syntax SENSe[1]:AUXout:MODe CLOCk | DATA

SENSe[1]:AUXout:MODe?

Description This command sets the mode for the error detector’s Aux Out port.
The following settings are available:

• CLOCk

The clock input is switched directly to the Aux Out port.

• DATA

The data input is switched via a comparator to the Aux Out port.

The comparator is controlled by the 0/1 threshold. You can use an
oscilloscope to determine if the 0/1 threshold is correctly set. If the
0/1 threshold is set below or above the data eye, the output at Aux Out
will be constant high or low, respectively.
Agilent Serial BERT, Programming Guide, May 2004 117

SCPI Command Reference SENSe[1] Subsystem
The following figure shows how the clock signal is directed to Aux Out
in CLOCk mode:

The following figure shows the circuit in DATA mode:

SENSe[1]:BLOCk Subnode

This subnode has the following SCPI structure:

CLK IN

DATA IN

AUX OUT

CDR

CLOCK MODE

Recovered CLK

Comparator

0/1 Threshold

internal
Signal

Analyzer

DATA MODE

CLK IN

DATA IN

AUX OUT

CDR
Recovered CLK

Comparator

0/1 Threshold

internal
Signal

Analyzer

SENSe[1]

:BLOCk[?]

BSTart[?]

BLENgth[?]
118 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
This subnode has the following commands:

SENSe[1]:BLOCk[?]

IVI-COM Equivalent IAgilentN490xEDErrorLocation.Mode (not IVI-compliant)

Syntax SENSe[1]:BLOCk ON | OFF | 0 | 1 | BEADdress | WPATtern | BLOCk

SENSe[1]:BLOCk?

Description This command configures the error location feature of the instrument.
It is only available for user-defined patterns (selected with
PATTern:SELect UPATtern or PATTern:SELect FILename). Only the
errors within the defined location are counted by the instrument.

Parameters The command has the following options:

• WPATtern

When this is selected, all errors that occur through the entire
pattern are counted. OFF and 0 (NULL) have the same effect.

• BEADdress

Only errors that occur at the specified bit address are counted. Use
:ELOC:BEAD to specify the bit address.

• BLOCk

Errors that occur within the specified bit address range are
counted. The bit address range is defined with the :BLOC:BST and
BLOC:BLEN commands. ON and 1 have the same effect.

Return Values The query returns the following:

• 0 (equivalent to WPATtern)

• 1 (equivalent to BLOCk)

• BEAD

Name Description under

:BLOCk[?] “SENSe[1]:BLOCk[?]” on page 119

:BLOCk:BSTart[?] “SENSe[1]:BLOCk:BSTart[?]” on page 120

:BLOCk:BLENgth[?] “SENSe[1]:BLOCk:BLENgth[?]” on page 120
Agilent Serial BERT, Programming Guide, May 2004 119

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:BLOCk:BSTart[?]

IVI-COM Equivalent IAgilentN490xEDErrorLocation.BlockStart (not IVI-compliant)

Syntax SENSe[1]:BLOCk:BSTart <numeric value>

SENSe[1]:BLOCk:BSTart?

Description Sets the starting bit address of a bit address range for error location.
The query returns the current value. This command only has an effect
if the BLOCk option is set with the SENSe[1]:BLOCk command.

This value must be in the range: 0 ... pattern length – 1. Values out of
range are set to the maximum value silently.

SENSe[1]:BLOCk:BLENgth[?]

IVI-COM Equivalent IAgilentN490xEDErrorLocation.BlockLength (not IVI-compliant)

Syntax SENSe[1]:BLOCk:BLENgth <numeric value>

SENSe[1]:BLOCk:BLENgth?

Description Sets the length of a bit address range for error location. The query
returns the current value. This command only has an effect if the
BLOCk option is set with the SENSe[1]:BLOCk command.

This value must be in the range: 1 ... (pattern length – one). Zero is set
to 1 silently. Values beyond the maximum value are set to the
maximum value silently.

NO TE The length is interpreted round cycled.
120 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:ELOCation Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

See the Serial BERT User’s Guide and “Using Error Location Capture
– Procedures” on page 35 for additional information.

SENSe[1]:ELOCation[?]

IVI-COM Equivalent IAgilentN490xEDErrorLocation.CaptureErrors (not IVI-compliant)

Syntax SENSe[1]:ELOCation ONCE|OFF

SENSe[1]:ELOCation?

Description ONCE initiates the error location capture measurement. OFF stops a
running error location measurement.

When an errored bit has been found, this command sets the location of
the errored bit as the value that can be queried with
SENSe[1]:ELOCation:BEADress?

The query returns the Error Location Capture command status. If 1 is
returned, Error Location Capture has been triggered (but is not
necessarily running). If 0 is returned, Error Location Capture has been
either aborted (and may be still running) or successfully finished.

This is an overlapped command.

SENSe[1]

:ELOCation[?]

:BEADdress[?]

:VERBose?

:ECOunt?

Name Description under

:ELOCation[?] “SENSe[1]:ELOCation[?]” on page 121

:ELOCation:BEADdress “SENSe[1]:ELOCation:BEADdress[?]” on
page 122

:ELOCation:VERBose? “SENSe[1]:ELOCation:VERBose?” on
page 122

:ELOCation:ECOunt? “SENSe[1]:ELOCation:ECOunt?” on page 123
Agilent Serial BERT, Programming Guide, May 2004 121

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:ELOCation:BEADdress[?]

IVI-COM Equivalent IAgilentN490xEDErrorLocation.BitAddress (not IVI-compliant)

Syntax SENSe[1]:ELOCation:BEADdress <numeric value>

SENSe[1]:ELOCation:BEADdress?

Description This command sets the bit address of the single bit that is to be
monitored for errors. Only errors that occur at this bit are counted.

The return value of the query depends on the error location capture
status:

• If an error has been captured, the bit position of the errored bit is
returned.

• If no error has been captured since the last start of error location
capture, the last set BEADdress is returned.

This command only has effect if the BEADdress option is selected with
“SENSe[1]:BLOCk[?]” on page 119.

SENSe[1]:ELOCation:VERBose?

IVI-COM Equivalent IAgilentN490xEDErrorLocation.ReadState (not IVI-compliant)

Syntax SENSe[1]:ELOCation:VERBose?

Description This query returns the current state of the error location capture
measurement. The following responses are possible:

• ELOC__NOT_STARTED_YET

Status: Stopped; ELOC not started since last instrument power-up.

• ELOC__RUNNING

Status: Running; ELOC is running, searching for an errored bit.

• ELOC__ERROR_DETECTED

Status: Running; ELOC has detected ein errored bit. The data is
being evaluated.

• ELOC__SUCCESS

Status: Stopped; Last ELOC run was ended successfully: an errored
bit was found in the bit stream and its bit position was calculated.
The bit position is returned with ELOC:BEAD?.

• ELOC__FAILED

Status: Stopped; last ELOC run was cancelled either due to a user
error or internal error.
122 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
• ELOC__ABORTED

Status: Stopped; last ELOC run was cancelled by the user (either
from the user interface or remotely).

NOTE Please note that the responses each have two underscores after ELOC.

SENSe[1]:ELOCation:ECOunt?

IVI-COM Equivalent IAgilentN490xEDErrorLocation.ReadCount (not IVI-compliant)

Syntax SENSe[1]:ELOCation:ECOunt?

Description Returns the number of bit-errors detected within the captured
pattern. Is only set when an ELOC run was successful.

SENSe[1]:EYE Subnode

This subnode has the following SCPI structure:

:MESSage?

SENSe[1]

:EYE

:ACENter[?]

:ALIGN

:AUTO[?]

:HEIGht?

:QUICk

:ALIGN

:AUTO?

:ACENter[?]

:TCENter[?]

:TCENter[?]

:THReshold[?]

:WIDTh?
Agilent Serial BERT, Programming Guide, May 2004 123

SCPI Command Reference SENSe[1] Subsystem
This subnode has the following commands:

SENSe[1]:EYE:ACENter[?]

IVI-COM Equivalent IAgilentN490xEDSampling.ZeroOneThresholdCenter (IVI-compliant)

Syntax SENSe[1]:EYE:ACENter

SENSe[1]:EYE:ACENter?

Description This command initiates a search for the 0/1 threshold voltage midway
between the two 0/1 threshold voltages with a measured BER just in
excess of the BER configured by the EYE:THReshold command. If
successful, the command leaves the 0/1 threshold at this value, and
the center of the eye can be found by querying the 0/1 threshold value.

If unsuccessful, EYE:HEIGht? returns 9.91E+37 (Not-A-Number, NAN).
The command :ACENter OFF aborts a previously started search. When
this command is in execution, SENSe[1]:VOLTage:ZOTHreshold:AUTo
is set to OFF. The query returns the current value of the 0/1 threshold
voltage.

This command is blocked for frequencies under 620 Mbits/s. See the
Serial BERT User Guide (or online Help) for details.

NO TE This command temporarily disables autoalign.

NO TE The command :ACENter is an overlapped command. For more
information, see “Overlapped and Sequential Commands” on
page 52.

Name Description under

:ACENter[?] “SENSe[1]:EYE:ACENter[?]” on page 124

:ALIGN:AUTo[?] “SENSe[1]:EYE:ALIGN:AUTo[?]” on page 125

:ALIGN:AUTo:MESSage? “SENSe[1]:EYE:ALIGN:AUTo:MESSage?” on
page 126

:HEIGht? “SENSe[1]:EYE:HEIGht?” on page 126

:QUICk:ALIGn:AUTo? “SENSe[1]:EYE:QUICk:ALIGn:AUTo?” on page 126

:QUICk:ACENter[?] “SENSe[1]:EYE:QUICk:ACENter[?]” on page 126

:QUICk:TCENter[?] “SENSe[1]:EYE:QUICk:TCENter[?]” on page 127

:TCENter[?] “SENSe[1]:EYE:TCENter[?]” on page 127

:THReshold[?] “SENSe[1]:EYE:THReshold[?]” on page 128

:WIDTh? “SENSe[1]:EYE:WIDTh?” on page 128
124 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:EYE:ALIGN:AUTo[?]

IVI-COM Equivalent IAgilentN490xEDSampling.AutoAlign (IVI-compliant)

Syntax SENSe[1]:EYE:ALIGN:AUTo ONCE | 0 | 1 | OFF | ON

SENSe[1]:EYE:ALIGN:AUTo?

Description This command is only available for instrument setups that include the
following:

• BER Threshold <= 1.0E-2

• PRBS patterns (2^n-1)

This command enables/disables autoalign.

This command is blocked for frequencies under 620 Mbits/s. See the
Serial BERT User Guide (or online Help) for details.

Return Parameters The query returns one of the following:

• CS_AUTO_ALIGN_INPROGRESS

Auto Alignment in progress

• CS_CLOCKTODATA_ALIGN_INPROGRESS

Clock to Data Alignment in progress

• CS_01THRESHOLD_INPROGRESS

Threshold Alignment in progress

• CS_ABORTED

Alignment interrupted by user command (*RST or
:SENS1:EYE:ALIG:AUTo 0)

• CS_FAILED

Alignment failed, the reason can be requested by
“SENSe[1]:EYE:ALIGN:AUTo:MESSage?” on page 126.

• CS_SUCCESSFUL

Alignment completed successfully, the eye parameters can be
requested.
Agilent Serial BERT, Programming Guide, May 2004 125

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:EYE:ALIGN:AUTo:MESSage?

IVI-COM Equivalent IIviDriverUtility.ErrorQuery (IVI-compliant)

Syntax SENSe[1]:EYE:ALIGN:AUTo:MESSage?

Description This query returns any message generated by the last autoalign. The
message may be generated by autoalign, threshold center, or datadelay
center functions. The message is returned as an unquoted string.

SENSe[1]:EYE:HEIGht?

IVI-COM Equivalent IAgilentN490xEDSampling.ReadEyeHeight (IVI-compliant)

Syntax SENSe[1]:EYE:HEIGht?

Description This is a query command that searches for the value of data amplitude
that puts the 0/1 threshold level midway between the upper and lower
bounds at which the error ratio exceeds the threshold value set by the
:EYE:THReshold command.

If the result is not available or the search was unsuccessful, then the
number 9.91E+37 (Not-A-Number, NAN) will be returned.

SENSe[1]:EYE:QUICk:ALIGn:AUTo?

Syntax SENSe[1]:EYE:QUICk:ALIGN:AUTo ONCE | 0 | 1 | OFF | ON

SENSe[1]:EYE:QUICk:ALIGN:AUTo? <Results>

Description This command calls “SENSe[1]:EYE:ALIGN:AUTo[?]” on page 125. It
has no functionality of its own.

SENSe[1]:EYE:QUICk:ACENter[?]

Syntax SENSe[1]:EYE:QUICk:ACENter ONCE | 0 | 1 | OFF | ON

SENSe[1]:EYE:QUICk:ACENter?

Description This command calls “SENSe[1]:EYE:ACENter[?]” on page 124. It has
no functionality of its own.
126 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:EYE:QUICk:TCENter[?]

Syntax SENSe[1]:EYE:QUICk:TCENter ONCE | 0 | 1 | OFF | ON

SENSe[1]:EYE:QUICk:TCENter?

Description This command calls “SENSe[1]:EYE:TCENter[?]” on page 127. It has
no functionality of its own.

SENSe[1]:EYE:TCENter[?]

IVI-COM Equivalent IAgilentN490xEDSampling.ClockDataAlignCenter (IVI-compliant)

Syntax SENSe[1]:EYE:TCENter ONCE | 0 | 1 | OFF | ON

SENSe[1]:EYE:TCENter?

Description This command initiates a search for the value of data/clock delay that
puts the active clock edge in the center of the data eye, midway
between the two relative delay points with a measured BER just in
excess of the BER configured by the EYE:THReshold command. If
successful, the command leaves the data/clock delay at this value and
the center of the eye can be found by querying the data delay value. If
unsuccessful, EYE:WIDth? will return 9.91E+37 (Not-A-Number, NAN).
The command :TCENter OFF aborts a previously started search.

NOTE The clock/data align feature (used to center the sampling point in the
data input eye) uses information derived from the input clock
frequency.

For the clock/data align feature to work properly, the input frequency
must be stable during the measurement. The frequencies at the start
and end of the measurement are compared, and if they differ by more
than 10%, the measurement fails.

When a source clocking the instrument changes frequency, it will take
time for the instrument to sense the change and adjust its
configuration. Refer to the sections dealing with clock stabilization to
ensure that the instrument’s configuration has stabilized following any
change of frequency prior to performing a clock to data alignment.
Agilent Serial BERT, Programming Guide, May 2004 127

SCPI Command Reference SENSe[1] Subsystem
There is no need to alter the sync-mode before or after a clock to data
alignment procedure, as AUTO sync-mode is automatically configured
for the duration of the procedure.

NO TE The command :TCENter is an overlapped command. See “Overlapped
and Sequential Commands” on page 52.

SENSe[1]:EYE:THReshold[?]

IVI-COM Equivalent IAgilentN490xEDSynchronisation.Threshold (IVI-compliant)

Syntax SENSe[1]:EYE:THReshold <Num.>

SENSe[1]:EYE:THReshold?

Description The command sets the BER threshold to be used in the determination
of the edges of the eye.

The query returns the current BER threshold value.

SENSe[1]:EYE:WIDTh?

IVI-COM Equivalent IAgilentN490xEDSampling.ReadEyeWidth (IVI-compliant)

Syntax SENSe[1]:EYE:WIDTh?

Description This is a query that interrogates the eye width found by the most
recent search for the value of data/clock delay that put the active edge
in the center of the data eye.

If the result is not available or the search was unsuccessful, then
9.91E+37 (Not-A-Number, NAN) will be returned.
128 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:GATE Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

SENSe[1]:GATE:BURSt[?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.BurstGatingEnabled (not IVI-
compliant)

Syntax SENSe[1]:GATE:BURSt 0|1|OFF|ON

Description The command turns the burst sync mode OFF or ON.

The query returns the current setting.

SENSe[1]

:GATE

:MANNer[?]

:MODE[?]

:PERiod

:BITS[?]

:ERRors[?]

[:TIME][?]

[:STATe][?]

:BURSt[?]

Name Description under

:BURSt[?] “SENSe[1]:GATE:BURSt[?]” on page 129

:MANNer[?] “SENSe[1]:GATE:MANNer[?]” on page 130

:MODe[?] “SENSe[1]:GATE:MODe[?]” on page 130

:PERiod:BITS[?] “SENSe[1]:GATE:PERiod:BITS[?]” on
page 131

:PERiod:ERRors[?] “SENSe[1]:GATE:PERiod:ERRors[?]” on
page 131

:PERiod[:TIMe][?] “SENSe[1]:GATE:PERiod[:TIMe][?]” on
page 132

[:STATe][?] “SENSe[1]:GATE[:STATe][?]” on page 132
Agilent Serial BERT, Programming Guide, May 2004 129

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:GATE:MANNer[?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.PeriodMode (not IVI-compliant)

Syntax SENSe[1]:GATE:MANNer <Manner>

SENSe[1]:GATE:MANNer?

Return Range TIME | ERR | BITS

Description This command sets the manner in which the accumulation period is
controlled. <Manner> can be one of the following:

• TIME

The error detector performs SINGle and REPetitive accumulation
periods that are controlled by elapsed time.

• ERRors

The error detector performs SINGle and REPetitive accumulation
periods that are controlled by the accumulation of bit errors.

• BITS

The error detector performs SINGle and REPetitive accumulation
periods that are controlled by the accumulation of clock bits.

The query returns the current manner of accumulation.

SENSe[1]:GATE:MODe[?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.ActivationMode (IVI-compliant)

Syntax SENSe[1]:GATE:MODE <Mode>

SENSe[1]:GATE:MODE?

Return Range MAN | SING | REP

Description The command sets the accumulation period mode <Mode>, which can
be either:

• MANual

The accumulation is started manually (by sending
GATE:STATe ON).

• SINGle

Errors are accumulated over one accumulation period.
130 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
• REPetitive

The accumulation loops, according to the setting of :GATe:MANNer.

Executing this command invalidates all past results. The query returns
the current accumulation mode.

SENSe[1]:GATE:PERiod:BITS[?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.Bits (IVI-compliant)

Syntax SENSe[1]:GATE:PERiod:BITS <Num.>

SENSe[1]:GATE:PERiod:BITS?

Description When GATE:MANNer is set to BITS, the duration of the accumulation
period is set in clock bits (or periods). <Num.> can be a value between
1E7 and 1E15 in decade steps.

Executing this command invalidates all past results.

The query returns the number of bits to which the gate period is set.

SENSe[1]:GATE:PERiod:ERRors[?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.Errors (IVI-compliant)

Syntax SENSe[1]:GATE:PERiod:ERRors <Num.>

SENSe[1]:GATE:PERiod:ERRors?

Description When GATE:MANNer is set to ERRors, the command sets the duration
of the accumulation period in bit errors. Values of 10, 100 and 1000 are
permitted.

Executing this command invalidates all past results.

The query returns the number of errors to which the gate period is set.
Agilent Serial BERT, Programming Guide, May 2004 131

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:GATE:PERiod[:TIMe][?]

IVI-COM Equivalent IAgilentN490xEDAccumulation.Time (IVI-compliant)

Syntax SENSe[1]:GATE:PERiod[:TIME] <Num.>

SENSe[1]:GATE:PERiod[:TIME]?

Description When GATE:MANNer is set to TIME, the duration of the accumulation
period is set in seconds. Neither a value less than 1 second nor greater
than 8639999 seconds (99 days, 23 hours, 59 minutes and 59 seconds)
is permitted.

The command causes all past results to be labelled as invalid.

The query returns the time to which the gate period is set.

SENSe[1]:GATE[:STATe][?]

Syntax SENSe[1]:GATE[:STATe] 0 | 1 | OFF | ON

SENSe[1]:GATE[:STATe]?

This command turns accumulation on or off.

NO TE Previous commands that have altered the configuration of the
instrument might not have settled. In order to ensure that the GATE
ON command is not executed until conditions have settled, it is
strongly recommended that the frequency be allowed to stabilize prior
to the GATE ON command, and then be followed by a synchronization
search. For more information, see “When patterns are sent to the
pattern generator or error detector, the Serial BERT requires some
time to settle before. The following topics explain how the
instruments react to pattern changes.” on page 20.

NO TE When GATE:MODE SINGle is executed, the GATE[:STATe]ON
command is an overlapped command. For more information, see see
“Overlapped and Sequential Commands” on page 52.

The query returns the current state of the accumulation gating.
132 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:PATTern Subnode

This subnode has the following SCPI structure:

This subnode has the following subnodes and commands:

[:ZRUN][?]

SENSe[1]

:PATTern

:FORMat

[:DATA][?]

:MDENsity

[:DENSity][?]

[:SELect][?]

:TRACk[?]

:UPATtern<n>

. . .

:UFILe

. . .

:ZSUBstitut

Name Description under

Commands

:FORMat[:DATa][?] “SENSe[1]:PATTern:FORMat[:DATa][?]” on
page 134

:MDENsity[:DENSity][?] “SENSe[1]:PATTern:MDENsity[:DENSity][?]”
on page 134

[:SELect][?] “SENSe[1]:PATTern[:SELect][?]” on page 135

:TRACk[?] “SENSe[1]:PATTern:TRACk[?]” on page 136

:ZSUBstitut[:ZRUN][?] “SENSe[1]:PATTern:ZSUBstitut[:ZRUN][?]” on
page 136

Subnodes

:UPATtern<n> “SENSe[1]:PATTern:UPATtern Subnode” on
page 137

:UFILe “SENSe[1]:PATTern:UFILe Subnode” on
page 142
Agilent Serial BERT, Programming Guide, May 2004 133

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:PATTern:FORMat[:DATa][?]
-compliant)

Syntax SENSe[1]:PATTern:FORMat[:DATA] PACKed, <numeric value>

SENSe[1]:PATTern:FORMat[:DATA]?

Input Parameters <PACKed> permits the packing of bits within a byte to be set.

<NR1> Can be 1, 4, or 8.

Return Range 1 | 4 | 8

Description The command controls the format of data transfer for the
:PATTern:UPATtern<n>:DATA, :PATTern:UPATtern<n>:IDATa,
:PATTern:UFILe:DATA and :PATTern:UFILe:IDATa commands. The
following values are possible:

• 1

The data is sent as a string of 1s and 0s.

• 4

The data is sent as a string of hex characters.

• 8

The data is sent as a string of full ASCII characters.

The query returns the current value of the data pack.

See “Working with User Patterns in SCPI” on page 47 for descriptions
on how to use the data packing.

SENSe[1]:PATTern:MDENsity[:DENSity][?]

IVI-COM Equivalent IAgilentN490xEDDataIn.MarkDensity (not IVI-compliant)

Syntax SENSe[1]:PATTern:MDENsity[:DENSity] <numeric value>

SENSe[1]:PATTern:MDENsity[:DENSity]?

Input Parameters <NR2> 0.125, 0.25, 0.5, 0.75, 0.875

Description The command sets the ratio of high bits to the total number of bits in
the pattern. The ratio may be varied in eighths, from one to seven
(eighths), but excluding three and five.

The query returns the mark density in eighths.
134 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:PATTern[:SELect][?]

IVI-COM Equivalent IAgilentN490xEDDataIn.SelectData (IVI-compliant)

Syntax SENSe[1]:PATTern[:SELect] <Source>

SENSe[1]:PATTern[:SELect]?

Description This command defines the type of pattern being generated. The
parameter is retained for backwards compatibility and may be one of
the following:

ZSUBstitut Zero SUBstitution; used for defining PRBN patterns in
which a block of bits is replaced by a block of zeros. The length of the
block is defined by “SENSe[1]:PATTern:ZSUBstitut[:ZRUN][?]” on
page 136.

MDENsity Mark DENsity; used for defining a PRBN pattern in
which the user can set the mark density. The mark density is set with
“SENSe[1]:PATTern:MDENsity[:DENSity][?]” on page 134.

UPATtern<n> User PATtern; used to define the contents of a
pattern store. For the Serial BERT, <n> can be 1 – 12.

FILename A parameter that allows the remote user to load a user
pattern from the instrument’s disk drive. This is the preferred
mechanism for loading user patterns in the Serial BERT.

The query form returns the pattern’s types in short form.

NOTE If a user-defined pattern is selected and the [:SELECT]? command is
used, the response is UPAT. The particular value of <n> or the name of
the file specified in the command form is not returned.

To get the path of a user pattern file, use the UFILe:NAME? command.

PRBS<n> <n> = 7, 10, 11, 15, 23, 31

PRBN<n> <n> = 7, 10,11,13, 15, 23

ZSUBstitut<n> <n> = 7, 10,11,13, 15, 23

UPATtern<n> <n> = 1 through 12

MDENsity<n> <n> = 7, 10,11,13, 15, 23

FILename, <string>
Agilent Serial BERT, Programming Guide, May 2004 135

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:PATTern:TRACk[?]

IVI-COM Equivalent IAgilentN490xEDDataIn.TrackingEnabled (not IVI-compliant)

Syntax SENSe[1]:PATTern:TRACk 0 | 1 | OFF | ON

SENSe[1]:PATTern:TRACk?

Description This command enables and disables the error detector pattern
tracking. When pattern tracking is enabled, the following commands
sent to either the pattern generator or error detector are sent to both:

• SOURce[1] | SENSe[1] :PATTern:SELect[?]

• SOURce[1] | SENSe[1] :PATTern:FORMat[?]

• SOURce[1] | SENSe[1] :PATTern:MDENsity[:DENSity][?]

• SOURce[1] | SENSe[1] :PATTern:ZSUBstitut[:ZRUN][?]

The query returns the current state of the pattern track setting.

When pattern tracking is disabled, both instruments continue to use
the current settings. Enabling pattern tracking causes the error
detector to take over the settings of the pattern generator.

SENSe[1]:PATTern:ZSUBstitut[:ZRUN][?]

IVI-COM Equivalent IAgilentN490xEDDataIn.ZeroSub (not IVI-compliant)

Syntax [SENSe[1]]:PATTern:ZSUBstitut[:ZRUN] MINimum | MAXimum |
<numeric value>

[SENSe[1]]:PATTern:ZSUBstitut[:ZRUN]?

Return Range <NR3>

Description ZSUB patterns are PRBN patterns, where a number of bits are
replaced by zeroes. The zero substitution starts after the longest runs
of zeroes in the pattern (for example, for PRBN 2^7, after the run of 7
zeroes). This command allows you to define the length of the run of
zeroes. For example, to produce 10 zeroes in a PRBN 2^7 pattern,
three additional bits after the run of 7 zeroes must be replaced by
zeroes. The bit after the run of zeroes (the closing bit) is set to 1.
136 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
The following figure shows an example, where a run of 10 zeroes is
inserted into a PRBN 2^7 pattern.

This command is only active when a ZSUB pattern has been selected
(see “SENSe[1]:PATTern[:SELect][?]” on page 135).

Range The minimum value is the PRBN value – 1. The maximum value is
length of the pattern – 1. So, for a PRBN 2^7 pattern, the minimum
value is 6, and the maximum value is 127 (2^7 – 1).

SENSe[1]:PATTern:UPATtern Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

*ZRUNRun of 0s

0000000 101000100

0000001000000 110PRBN

ZSUB

* Closing bit

SENSe[1]

:PATTern

:UPATtern<n>

:DATA[?]

:IDATa[?]

[:LENGth][?]

:LABel[?]

:USE[?]

Name Description under

:DATA[?] “SENSe[1]:PATTern:UPATtern<n>:DATA[?]”
on page 138

:IDATa[?] “SENSe[1]:PATTern:UPATtern<n>:IDATa[?]”
on page 139

[:LENGth][?] “SENSe[1]:PATTern:UPATtern<n>[:LENGth][?]
” on page 140

:LABel[?] “SENSe[1]:PATTern:UPATtern<n>:LABel[?]”
on page 141

:USE[?] “SENSe[1]:PATTern:UPATtern<n>:USE[?]” on
page 141
Agilent Serial BERT, Programming Guide, May 2004 137

SCPI Command Reference SENSe[1] Subsystem
NO TE For the UPATtern<n> commands, <n> can be in the range 0 – 12. 0
(zero) is used to select the current pattern, 1 – 12 selects one of the
user patterns in the memory.

SENSe[1]:PATTern:UPATtern<n>:DATA[?]

IVI-COM Equivalent IAgilentN490xEDPatternfile.SetData (IVI-compliant)

Syntax SENSe[1]:PATTern:UPATtern<n>:DATA [A|B,] <block_data>

SENSe[1]:PATTern:UPATtern<n>:DATA? [A|B]

Return Range The query returns the standard (A) or alternate pattern (B) of the file
found under <filename>.

Description This command is used to set the bits in user pattern files. See
“Working with User Patterns in SCPI” on page 47 for a detailed
description on how to edit user patterns.

The parameters have the following meanings:

<block data> The <block data> parameter contains the actual data for setting the
bits of the user pattern. The bits can also be packed using the
FORMat[:DATA] command. If the bits are not packed, they are handled
as 8-bit data. See “[SOURce[1]]:PATTern:FORMat[:DATA][?]” on
page 73.

This command also sets the pattern length to fit the length of the data:
If the data block is longer than the pattern, the pattern is extended to
fit the data; if the data block is shorter than the pattern, the pattern is
truncated to the end of the data.

<block data> starts with a header that indicates the length of the
desired resulting data. The length of the <block data> embedded in the
header always refers to the length of the data block in bytes.

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B =
alternate pattern). If the pattern file describes a standard pattern (:USE =
STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<block data> The data that describes the pattern (see the following for the
description).
138 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
For example, consider the following header:

#19<data>

For non-packed data (or 8-bit packed data), the <block data> required
to set an 8-bit pattern of alternating 1s and 0s (01010101) would be:

#11U (Note: “U” is the ASCII representation of binary 01010101.)

For 4-bit packed data, the <block data> required to set the same
pattern would be:

#1255

For 1-bit packed data, the <block data> would be as follows:

#1801010101

SENSe[1]:PATTern:UPATtern<n>:IDATa[?]

IVI-COM Equivalent IAgilentN490xEDPatternfile.SetDataBlock (IVI-compliant)

Syntax SENSe[1]:PATTern:UPATtern<n>:IDATa [A|B,] <start_bit>,
<length_in_bits>, <block_data>

SENSe[1]:PATTern:UPATtern<n>:IDATa? [A|B,] <start_bit>,
<length_in_bits>

Return Range The query returns the selected bits of the standard (A) or alternate (B)
pattern of the file found under <filename>.

Description This command is used to set specific bits in a user pattern. It is similar
to the :DATA command. The :IDATa command is a contraction of the
phrase Incremental DATa and is used to download part of a user-
defined pattern.

Start of the header.

1 Number of decimal digits to follow to form the length.

9 Length of the data block (in bytes) that follows.

<data> The pattern data, packed according the the
DATA:PACKed command.
Agilent Serial BERT, Programming Guide, May 2004 139

SCPI Command Reference SENSe[1] Subsystem
The parameters have the following meanings:

The use of the parameters can be best illustrated by an example. If we
have an alternate 16-bit pattern of 0s only, and we want to set the last
four bits to 1s, the IDATa command would appear as follows:

• If the data packing is 8:

SENSe[1]:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #11(&F0)
(where (&F0) is replaced by the ASCII representation of the value)

• If the data packing is 4:

SENSe[1]:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #11F

• If the data packing is 1:

SENSe[1]:PATTern:UPAT1:IDATa B, <filename>, 12, 4, #141111

The response form returns <block data> at the specified location.

NO TE See “Working with User Patterns in SCPI” on page 47 for more
information on using this command.

SENSe[1]:PATTern:UPATtern<n>[:LENGth][?]

IVI-COM Equivalent IAgilentN490xEDPatternfile.Length (IVI-compliant)

Syntax SENSe[1]:PATTern:UPATtern<n>[:LENGth] <Num.>

SENSe[1]:PATTern:UPATtern<n>[:LENGth]?

Description This command sets the length of a user pattern file. The query returns
the length of the user pattern file. If an alternate pattern is selected
(:USE APATtern), the LENGth command sets the length of each half of
the pattern.

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B
= alternate pattern). If the pattern file describes a standard pattern
(:USE = STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<start bit> First bit to be overwritten (starting with 0).

<length_in_bits> Number of bits to be overwritten.

<block data> The data that describes the pattern (see
“SENSe[1]:PATTern:UPATtern<n>:DATA[?]” on page 138 for the
description).
140 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
Note that the :DATA command sets the length of the file.

See “Working with User Patterns in SCPI” on page 47 for information
on using this command.

SENSe[1]:PATTern:UPATtern<n>:LABel[?]

IVI-COM Equivalent IAgilentN490xEDPatternfile.Description (IVI-compliant)

Syntax SENSe[1]:PATTern:UPATtern<n>:LABel <string>

SENSe[1]:PATTern:UPATtern<n>:LABel?

Description This command sets a description for a user pattern file. The query
returns the description. See “Working with User Patterns in SCPI” on
page 47 for information on using this command.

SENSe[1]:PATTern:UPATtern<n>:USE[?]

IVI-COM Equivalent IAgilentN490xEDPatternfile.Alternate (IVI-compliant)

Syntax SENSe[1]:PATTern:UPATtern<n>:USE STRaight | APATtern

SENSe[1]:PATTern:UPATtern<n>:USE?

Return Range STR | APAT

Description This command defines whether a user pattern file should be a straight
pattern or an alternate pattern:

• STRaight

The pattern is repeatedly output.

• APATtern

The pattern is composed of two halves. The output depends on
various other commands; see “How the Serial BERT Uses Alternate
Patterns” on page 40 for more information.

The default is set to have a length of 128 bits for each half pattern; all
bits are set to zero and the trigger is set to occur on the A/B
changeover. See “Working with User Patterns in SCPI” on page 47 for
information on using this command.
Agilent Serial BERT, Programming Guide, May 2004 141

SCPI Command Reference SENSe[1] Subsystem
SENSe[1]:PATTern:UFILe Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

SENSe[1]:PATTern:UFILe[:LENGth][?]

IVI-COM Equivalent IAgilentN490xLocalPatternfile.Length (IVI-compliant)

Syntax SENSe[1]:PATTern:UFILe[:LENGth] <filename>, <numeric_value>

SENSe[1]:PATTern:UFILe[:LENGth]? <filename>

Description This command sets the length of a user pattern file. The query returns
the length of the user pattern file. If an alternate pattern is selected
(:USE APATtern), the LENGth command sets the length of each half of
the pattern.

SENSe[1]

:PATTern

:UFILe

[:LENGth][?]

:LABel[?]

:USE[?]

:DATA[?]

:IDATa[?]

:NAME?

Name Description under

[:LENGth][?] “SENSe[1]:PATTern:UFILe[:LENGth][?]” on
page 142

:LABel[?] “SENSe[1]:PATTern:UFILe:LABel[?]” on
page 143

:USE[?] “SENSe[1]:PATTern:UFILe:USE[?]” on
page 143

:DATa[?] “SENSe[1]:PATTern:UFILe:DATa[?]” on
page 143

:IDATa[?] “SENSe[1]:PATTern:UFILe:IDATa[?]” on
page 145

:NAMe[?] “SENSe[1]:PATTern:UFILe:NAMe[?]” on
page 146
142 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
Note that the :DATA command automatically sets the length of the file.

See “Working with User Patterns in SCPI” on page 47 for information
on using this command.

SENSe[1]:PATTern:UFILe:LABel[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.Description (IVI-compliant)

Syntax SENSe[1]:PATTern:UFILe:LABel <filename>, <string>

SENSe[1]:PATTern:UFILe:LABel? <filename>

Description This command sets a description for a user pattern file. The query
returns the description. See “Working with User Patterns in SCPI” on
page 47 for information on using this command.

SENSe[1]:PATTern:UFILe:USE[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.Alternate (IVI-compliant)

Syntax SENSe[1]:PATTern:UFILe:USE <filename>, STRaight | APATtern

SENSe[1]:PATTern:UFILe:USE? <filename>

Description This command defines whether a user pattern file should be a straight
pattern or an alternate pattern:

• STRaight

The pattern is repeatedly output.

• APATtern

The pattern is composed of two halves. The output depends on
various other commands; see “How the Serial BERT Uses Alternate
Patterns” on page 40 for more information.

The default is set to have a length of 128 bits for each half pattern; all
bits are set to zero and the trigger is set to occur on the A/B
changeover.

SENSe[1]:PATTern:UFILe:DATa[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.SetData (IVI-compliant)

Syntax SENSe[1]:PATTern:UFILe:DATA [A | B,] <filename>, <block_data>

SENSe[1]:PATTern:UFILe:DATA? [A|B,] <filename>
Agilent Serial BERT, Programming Guide, May 2004 143

SCPI Command Reference SENSe[1] Subsystem
Return Range The query returns the standard (A) or alternate pattern (B) of the file
found under <filename>.

Description This command is used to set the bits in user pattern files. See
“Working with User Patterns in SCPI” on page 47 for a detailed
description on how to edit user patterns.

The parameters have the following meanings:

<block data> The <block data> parameter contains the actual data for setting the
bits of the user pattern. The bits can also be packed using the
FORMat[:DATA] command. If the bits are not packed, they are handled
as 8-bit data. See “[SOURce[1]]:PATTern:FORMat[:DATA][?]” on
page 73.

This command also sets the pattern length to fit the length of the data:
If the data block is longer than the pattern, the pattern is extended to
fit the data; if the data block is shorter than the pattern, the pattern is
truncated to the end of the data.

<block data> starts with a header that indicates the length of the
desired resulting data. The length of the <block data> embedded in the
header always refers to the length of the data block in bytes.

For example, consider the following header:

#19<data>

For non-packed data (or 8-bit packed data), the <block data> required
to set an 8-bit pattern of alternating 1s and 0s (01010101) would be:

#11U (Note that “U” is the ASCII representation of 85)

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B =
alternate pattern). If the pattern file describes a standard pattern (:USE =
STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<block data> The data that describes the pattern (see the following for the
description).

Start of the header.

1 Number of decimal digits to follow to form the length.

9 Length of the data block (in bytes) that follows.

<data> The pattern data, packed according the the
DATA:PACKed command.
144 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
For 4-bit packed data, the <block data> required to set the same
pattern would be:

#1255

For 1-bit packed data, the <block data> would be as follows:

#1801010101

SENSe[1]:PATTern:UFILe:IDATa[?]

IVI-COM Equivalent IAgilentN490xPGPatternfile.SetDataBlock (IVI-compliant)

Syntax SENSe[1]:PATTern:UFILe:IDATa [A | B,] <filename>, <start_bit>,
<length_in_bits>, <block_data>

SENSe[1]:PATTern:UFILe:IDATa? [A|B,] <filename>, <start_bit>,
<length_in_bits>

Return Range The query returns the selected bits of the standard (A) or alternate (B)
pattern of the file found under <filename>.

Description This command is used to set specific bits in a user pattern. It is similar
to the :DATA command. The :IDATa command is a contraction of the
phrase Incremental DATa and is used to download part of a user-
defined pattern.

The parameters have the following meanings:

The use of the parameters can be best illustrated by an example. If we
have an alternate 16-bit pattern of 0s only, and we want to set the last
four bits to 1s, the IDATa command would appear as follows:

• If the data packing is 8:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #11(&F0)
(where (&F0) is replaced by the ASCII representation of the value)

• If the data packing is 4:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #11F

Parameter Description

[A|B] Defines for which pattern the data is to be set (A = standard pattern, B
= alternate pattern). If the pattern file describes a standard pattern
(:USE = STRaight), this parameter cannot be B.

<filename> Name of the file being defined. If the file does not exist, it is created.

<start bit> First bit to be overwritten (starting with 0).

<length_in_bits> Number of bits to be overwritten.

<block data> The data that describes the pattern (see
“[SOURce[1]]:PATTern:UFILe:DATA[?]” on page 81 for the description).
Agilent Serial BERT, Programming Guide, May 2004 145

SCPI Command Reference SENSe[1] Subsystem
• If the data packing is 1:

SOURce1:PATTern:UFILe:IDATa B, <filename>, 12, 4, #141111

The response form returns <block data> at the specified location.

NO TE See “Working with User Patterns in SCPI” on page 47 for more
information on using this command.

SENSe[1]:PATTern:UFILe:NAMe[?]

Syntax SENSe[1]:PATTern:UFILe:NAME?

Description This query returns the file name of the currently used user pattern. It
is only valid if SENSe[1]:PATTern:SELect? returns UPAT.

SENSe[1]:VOLTage Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

[:HIGH][?]

:ZOTHreshold[?]

:RANGe

:AUTO[?]

:LOW[?]

SENSe[1]

Name Description under

:ZOTHreshold[?] “SENSe[1]:VOLTage:ZOTHreshold[?]” on
page 147

:ZOTHreshold:RANGe[:HIGH][?] “SENSe[1]:VOLTage:ZOTHreshold:RANGe[:HI
GH][?]” on page 147

:ZOTHreshold:RANGe:LOW[?] “SENSe[1]:VOLTage:ZOTHreshold:RANGe:LO
W[?]” on page 147

:ZOTHreshold:AUTo[?] “SENSe[1]:VOLTage:ZOTHreshold:AUTo[?]”
on page 148
146 Agilent Serial BERT, Programming Guide, May 2004

SENSe[1] Subsystem SCPI Command Reference
SENSe[1]:VOLTage:ZOTHreshold[?]

IVI-COM Equivalent IAgilentN490xEDSampling.ZeroOneThreshold (IVI-compliant)

Syntax SENSe[1]:VOLTage:ZOTHreshold <Num.>

SENSe[1]:VOLTage:ZOTHreshold?

Description This command sets the level at which the error detector discriminates
between a 0 and a 1.

A numeric value parameter sets the level to a given value in Volts. It
also sets :ZOTHreshold:AUTo to OFF.

When in :ZOTHreshold:AUTo OFF, the query returns the last user-
entered value.

When in :ZOTHreshold:AUTo ON, the query returns the value
automatically determined by the hardware.

If you are going to use this command to set the 0/1 threshold, first
disable the automatic mode with :ZOTHreshold:AUTo OFF.

SENSe[1]:VOLTage:ZOTHreshold:RANGe[:HIGH][?]

IVI-COM Equivalent IAgilentN490xEDSampling.ZeroOneThresholdVHigh (not IVI-
compliant)

Syntax SENSe[1]:VOLTage:ZOTHreshold:RANGe[:HIGH] <NR3>

SENSe[1]:VOLTage:ZOTHreshold:RANGe[:HIGH]?

Description Sets/returns the higher limit of the input range of the zero/one
threshold.

SENSe[1]:VOLTage:ZOTHreshold:RANGe:LOW[?]

IVI-COM Equivalent IAgilentN490xEDSampling.ZeroOneThresholdVLow (not IVI-
compliant)

Syntax SENSe[1]:VOLTage:ZOTHreshold:RANGe:LOW <NR3>

SENSe[1]:VOLTage:ZOTHreshold:RANGe:LOW?

Description Sets/returns the lower limit of the input range of the zero/one
threshold.
Agilent Serial BERT, Programming Guide, May 2004 147

SCPI Command Reference INPut2 Subsystem
SENSe[1]:VOLTage:ZOTHreshold:AUTo[?]

IVI-COM Equivalent IAgilentN490xEDSampling.ZeroOneThresholdTrack (not IVI-
compliant)

Syntax SENSe[1]:VOLTage:ZOTHreshold:AUTo 0 | 1 | OFF | ON

SENSe[1]:VOLTage:ZOTHreshold:AUTo?

Description This command enables an automatic mode, in which the 0/1 threshold
level is set to the mean of the input signal.

The query returns the current setting of the hardware discrimination
circuit.

INPut2 Subsystem

The INPut2 Subsystem represents the error detector’s Clock In port.

This subsystem has the following SCPI structure:

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK IN:
SENSe2, INPut2

:COUPling[?]

INPut2

:TERMination[?]
148 Agilent Serial BERT, Programming Guide, May 2004

SENSe2 Subsystem SCPI Command Reference
INPut2:TERMination[?]

Syntax INPut2:TERMination 0 | –2 | 1.3

INPut2:TERMination?

This command is obsolete. It has no effect.

INPut2:COUPling[?]

Syntax INPut2:COUPling AC | DC

INPut2:COUPling?

This command is obsolete. It has no effect.

SENSe2 Subsystem

The SENSe2 Subsystem controls the error detector's Clock In port.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

CLK IN:
SENSe2, INPut2
Agilent Serial BERT, Programming Guide, May 2004 149

SCPI Command Reference SENSe2 Subsystem
This subsystem has the following SCPI structure:

This subsystem has the following commands:

SENSe2:FREQuency[:CW|:FIXed]?

IVI-COM Equivalent IAgilentN490xEDClockIn.GetFrequency (IVI-compliant)

Syntax SENSe2:FREQuency[:CW|:FIXed]?

Description This query returns the internal clock source frequency. You can also
use any of the forms listed below:

• SENSe2:FREQuency?

• SENSe2:FREQuency:CW?

[:VALue][?]

:RANGe?

SENSe2

:FREQuency

[:CW | :FIXed]?

:VOLTage

:EDGE[?]

:CDR[?]

:THReshold

:AUTO[?]

:MEASure[?]

Name Description under

:FREQuency[:CW | FIXed]? “SENSe2:FREQuency[:CW|:FIXed]?” on
page 150

:FREQuency:CDR[?] “SENSe2:FREQuency:CDR[?]” on page 151

:FREQuency:CDR:RANGe? “SENSe2:FREQuency:CDR:RANGe?” on
page 152

:FREQuency:CDR:AUTo[?] “SENSe2:FREQuency:CDR:AUTo[?]” on
page 152

:FREQuency:CDR:THReshold[:VALue][?] “SENSe2:FREQuency:CDR:THReshold[:VALue
][?]” on page 153

:FREQuency:CDR:THReshold:MEASure[?] “SENSe2:FREQuency:CDR:THReshold:MEASu
re[?]” on page 153

:VOLTage:EDGe[?] “SENSe2:VOLTage:EDGe[?]” on page 153
150 Agilent Serial BERT, Programming Guide, May 2004

SENSe2 Subsystem SCPI Command Reference
• SENSe2:FREQuency:FIXed?

These forms have the same effect.

SENSe2:FREQuency:CDR[?]

IVI-COM Equivalent IAgilentN490xEDCDR.Enabled (not IVI-compliant)

Syntax SENSe2:FREQuency:CDR ON | OFF

SENSe2:FREQuency:CDR?

Description Enables or disables clock data recovery (CDR) mode.

How Does Clock Data Recovery

Work?

In CDR mode, the CDR has to recover the clock from the incoming
data. To do this, the hardware has to decide whether the voltage at the
input connector is a logical ’1’ or ’0’ and then recover the clock from
the detected transitions.

Because the regular threshold voltage is not only used to determine
the optimum sampling for the data, but also to perform measurements
such as eye diagram or output level measurements, it is not possible to
use it for the clock recovery.

For this reason, the clock recovery circuitry has it’s own comparator
for the incoming data. This comparator also needs to know the
threshold voltage (0/1 decision threshold).

The threshold voltage can be derived from the input signal via a low-
pass filter. This will work fine for most applications. But applications
that do not provide a continuous data stream at the input (for
example, any application using bursts) cannot use this low-pass filter,
because the threshold voltage will drift from the correct level when
there is no input. In such cases, the threshold can be specified
manually. It is then no longer derived from the input signal (see the
following figure). The manually set threshold voltage must of course be
within the input range.

The difference between the data path and the CDR path is that the
comparator of the CDR is always single-ended. Thus, this comparator
always needs a threshold voltage that lies between the high and low
levels of the incoming signal.

The differential threshold of the data path comparator has no relation
to the single-ended threshold of the CDR path comparator. This means
that in differential mode, the two thresholds will be different and in
single-ended mode (either normal and complement) they will/can be
equal (except during measurements).
Agilent Serial BERT, Programming Guide, May 2004 151

SCPI Command Reference SENSe2 Subsystem
The following figure shows a simplified block diagram. It does not
reflect the different input modes (especially the differential case), but
it matches both single-ended cases.

SENSe2:FREQuency:CDR:RANGe?

IVI-COM Equivalent IAgilentN490xEDCDR.GetRanges (not IVI-compliant)

Syntax SENSe2:FREQuency:CDR:RANGe?

Description Comma-separated list of CDR (Hertz) ranges:
“min,max,min,max,min,max”

For example:
2.45e+009,3.21e+009,4.9e+009,6.42e+009,9.9e+009,1.09e+010

This indicates the following CDR ranges:

• 2.45 – 3.21 GHz

• 4.9 – 6.42 GHz

• 9.9 – 10.9 GHz

SENSe2:FREQuency:CDR:AUTo[?]

IVI-COM Equivalent IAgilentN490xEDCDR.ThresholdAutoTracking (not IVI-compliant)

Syntax SENSe2:FREQuency:CDR:AUTo 0|1|OFF|ON

SENSe2:FREQuency:CDR:AUT0?

Description Enables/disables the automatic tracking for the CDR threshold. The
query returns the current setting. Default is ON.

The automatic tracking should be disabled for burst applications.

Low Pass
Filter

Threshold
Voltage

Threshold
Voltage

DC tracking on/off
switches

Input
Connector

Comparator

Comparator

CDR

Data
Processing

recovered
Clock
152 Agilent Serial BERT, Programming Guide, May 2004

SENSe2 Subsystem SCPI Command Reference
SENSe2:FREQuency:CDR:THReshold[:VALue][?]

IVI-COM Equivalent IAgilentN490xEDCDR.Threshold (not IVI-compliant)

Syntax SENSe2:FREQuency:CDR:THReshold:VALue <NR3>

SENSe2:FREQuency:CDR:THReshold:VALue?

Description Sets/gets the manual threshold for CDR bit transitions.

SENSe2:FREQuency:CDR:THReshold:MEASure[?]

IVI-COM Equivalent IAgilentN490xEDCDR.MeasureAndSetThreshold (not IVI-compliant)

Syntax SENSe2:FREQuency:CDR:THReshold:MEASure ONCe

SENSe2:FREQuency:CDR:THReshold:MEASure?

Description The command measures the DC level at the CDR input and sets the
measured value as CDR threshold.

The query returns the current DC level at the CDR input.

SENSe2:VOLTage:EDGe[?]

IVI-COM Equivalent IAgilentN490xEDClockIn.ActiveEdge (IVI-compliant)

Syntax SENSe2:VOLTage:EDGe NEGative | POSitive

SENSe2:VOLTage:EDGe?

Description Sets the active edge of the clock input:

• NEGative

The falling edge starts the period in which the input data is
sampled.

• POSitive

The rising edge starts the period in which the input data is sampled.

This command has restrictions for frequencies under 620 Mbits/s. See
the Serial BERT User Guide (or online Help) for details.
Agilent Serial BERT, Programming Guide, May 2004 153

SCPI Command Reference SOURce7 Subsystem
SOURce7 Subsystem

SOURce7 represents the error detector’s Trigger Out port.

This subsystem has the following SCPI structure:

SOURce7:TRIGger[:MODe][?]

IVI-COM Equivalent IAgilentN490xEDTrigger.Mode (IVI-compliant)

Syntax SOURce7:TRIGger[:MODE] DCLock | PATTern

SOURce7:TRIGger[:MODE]?

Description The command configures the error detector’s Trigger Out port from
the error detector to be either:

• DCLock

Divided clock mode (a square wave at clock rate/8)

• PATTern

Pattern mode (a pulse synchronized to repetitions of the pattern)

The query returns current mode for the Trigger Out of the error
detector.

Pattern Generator

Error Detector

10MHz
REF IN

AUX
IN

ERROR
ADD

TRIGGER
OUT

CLK
IN

CLK
OUT

CLK
OUT

DATA
OUT

DATA
OUT

DELAY
CTRL IN

ERR
OUT

TRIG
OUT

CLK
IN

GATE
IN

AUX
OUT

DATA
IN

DATA
IN

Pattern Generator
Data

Error Detector
Data Clock Clock

Amplitude Offset
Data Out

Delay Amplitude Offset
Decision

Threshold
Data In
Delay

Agilent

Auto
Align

Pattern
Setup

PG
Setup

ED
Setup

Results

TRIG OUT:
SOURce7

SOURce7

:TRIGger

[:MODE][?]

DCDRatio

CTDRatio?
154 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
SOURce7:TRIGger:DCDRatio

IVI-COM Equivalent IAgilentN490xEDTrigger.ClockDivisionRate (IVI-compliant)

Syntax SOURce7:TRIGger:DCDRatio <NR1>

Description Sets the trigger subratio.

SOURce7:TRIGger:CTDRatio?

IVI-COM Equivalent IAgilentN490xEDTrigger.ClockDivisionRate (IVI-compliant)

Syntax SOURce7:TRIGger:CTDratio?

Description Returns the trigger subratio.

[P]FETCh Subsystem

The [P]FETCh Subsystem is used to query the error detector’s results.

The PFETch subsystem returns the results immediately previously to
the current results.

This subsystem has the following SCPI structure:

[P]FETCh

[:SENSe[1]]

. . .

:SENSe2

:BCOunt?

:FREQuency

[:CW|:FIXed]?
Agilent Serial BERT, Programming Guide, May 2004 155

SCPI Command Reference [P]FETCh Subsystem
This subsystem has the following commands:

[P]FETCh:SENSe2:BCOunt?

IVI-COM Equivalent IAgilentN490xEDMeasurement.ReadBitCount (IVI-compliant)

Syntax [P]FETCh:SENSe2:BCOunt?

Description This query returns the accumulated bit count since the start of the
accumulation period.

[P]FETCh:SENSe2:FREQuency[:CW|:FIXed]?

IVI-COM Equivalent IAgilentN490xEDMeasurement.ReadClockFrequency (IVI-compliant)

Syntax [P]FETCh:SENSe2:FREQuency[:CW|:FIXed]?

Description This query returns the current frequency of the signal on the clock
input. This measurement is independent of the accumulation period.

Name Description under

Commands

SENSe2:BCOunt? “[P]FETCh:SENSe2:BCOunt?” on page 156

SENSe2:FREQ[:CW|:FIXed]? “[P]FETCh:SENSe2:FREQuency[:CW|:FIXed]?
” on page 156

Subnode

[SENSe[1]] “[P]FETCh[:SENSe[1]] Subnode” on page 157
156 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]] Subnode

This subnode has the following SCPI structure:

:ELAPsed?

:BURSt

. . .

[P]FETCh

[:SENSe[1]]

:ECOunt

. . .

:EFINterval

. . .

:EINTerval

. . .

:G821

. . .

:ERATio

. . .

:OASZero

[:TOTal]?

:ZASone

[:TOTal]?

:LOSS

:POWer?

:SYNChronizat?

:GATe
Agilent Serial BERT, Programming Guide, May 2004 157

SCPI Command Reference [P]FETCh Subsystem
This subnode has the following commands and subnodes:

[P]FETCh[:SENSe[1]]:GATe:ELAPsed?

IVI-COM Equivalent IAgilentN490xEDAccumulation.FetchElapsed (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:GATe:ELAPsed?

Description This query returns information about the degree to which the
accumulation period has progressed.

If SENSe[1]:GATE:MANNer TIME is selected, then this command
returns the elapsed time in the accumulation period in units of
seconds.

If SENSe[1]:GATE:MANNer ERRors is selected, this command returns
the elapsed errors into the accumulation period.

If SENSe[1]:GATE:MANNer BITS is selected, then this command
returns the elapsed clock bits into the accumulation period.

Name Description under

Commands

:GATe:ELAPsed? “[P]FETCh[:SENSe[1]]:GATe:ELAPsed?” on
page 158

:LOSS:POWer? “[P]FETCh[:SENSe[1]]:LOSS:POWer?” on
page 159

:LOSS:SYNChronizat? “[P]FETCh[:SENSe[1]]:LOSS:SYNChronizat?”
on page 159

Subnodes

:BURSt “[P]FETCh[:SENSe[1]]:BURSt Subnode” on
page 159

:ECOunt “[P]FETCh[:SENSe[1]]:ECOunt Subnode” on
page 162

:EFINterval “[P]FETCh[:SENSe[1]]:EFINterval Subnode”
on page 163

:EINTerval “[P]FETCh[:SENSe[1]]:EINTerval Subnode” on
page 165

:ERATio “[P]FETCh[:SENSe[1]]:ERATio Subnode” on
page 166
158 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]]:LOSS:POWer?

Syntax [P]FETCh[:SENSe[1]]:LOSS:POWer?

Description This query returns the total number of seconds that power was lost
since the start of the accumulation period.

This command is not supported.

[P]FETCh[:SENSe[1]]:LOSS:SYNChronizat?

IVI-COM Equivalent IAgilentN490xEDMeasurement.ReadSecondsSyncLoss (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:LOSS:SYNChronizat?

Description This query returns of the total number of seconds for which the
incoming pattern was not synchronized to the reference pattern
during the accumulation period.

[P]FETCh[:SENSe[1]]:BURSt Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

[P]FETCh

[:SENSe[1]]

:BURSt

:BCOunt?

:DCYCle?

:SRATio?

:TCOunt?

:STATe?

Name Description under

:BCOunt? “[P]FETCh[:SENSe[1]]:BURSt:BCOunt?” on
page 160

:DCYCle? “[P]FETCh[:SENSe[1]]:BURSt:DCYCle?” on
page 160

:SRATio? “[P]FETCh[:SENSe[1]]:BURSt:SRATio?” on
page 160

:TCOunt? “[P]FETCh[:SENSe[1]]:BURSt:TCOunt?” on
page 160

:STATe? “[P]FETCh[:SENSe[1]]:BURSt:STATe?” on
page 161
Agilent Serial BERT, Programming Guide, May 2004 159

SCPI Command Reference [P]FETCh Subsystem
[P]FETCh[:SENSe[1]]:BURSt:BCOunt?

IVI-COM Equivalent IAgilentN490xEDBurst.ReadBadCount (not IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:BURSt:BCOunt?

Description This query returns the Bad Burst COunt since the start of the
accumulation period. If Burst mode is OFF, it returns 9.91E+37 (Not-A-
Number, NAN).

For more information on how the Serial BERT handles burst
measurements, see the Serial BERT User Guide (or online Help).

[P]FETCh[:SENSe[1]]:BURSt:DCYCle?

IVI-COM Equivalent IAgilentN490xEDBurst.ReadDutyCycle (not IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:BURSt:DCYCle?

Description This query is obsolete. It returns 9.91E+37 (Not-A-Number, NAN).

[P]FETCh[:SENSe[1]]:BURSt:SRATio?

IVI-COM Equivalent IAgilentN490xEDBurst.ReadSyncRatio (not IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:BURSt:SRATio?

Description This query returns the Burst Synchronization RATio since the start of
the accumulation period. If Burst mode is OFF, it returns 9.91E+37
(Not-A-Number, NAN).

[P]FETCh[:SENSe[1]]:BURSt:TCOunt?

IVI-COM Equivalent IAgilentN490xEDBurst.ReadTotalCount (not IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:BURSt:TCOunt?

Description This query returns the Total Burst COunt since the start of the
accumulation period. If Burst mode is OFF, it returns 9.91E+37 (Not-A-
Number, NAN).
160 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]]:BURSt:STATe?

IVI-COM Equivalent IAgilentN490xEDBurst.ReadState (not IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:BURSt:STATe?

Description This query returns the burst state. While the accumulation period is
running, the burst state always indicates, for example, if the current
gate is too long or not. Thus, if the duty cycle or frequency of the gate
signal is changed, the burst state also changes.

It may be of interest to know if an errored state occured during a
measurement. For this reason, any errored state is stored even if the
warning was only active for one burst out of thousands.

The following states may be returned:

• BURST_RESULT_STATE__NO_ERROR

No burst errors have occurred (any of those listed below).

• BURST_RESULT_STATE__GATE_SIGNAL_TOO_LONG

The Gate In signal is too long. This error can occur if there are too
many bits within a burst. The limit is 4 Gbit. The length of the Gate
In signal therefore depends on the bit rate.

At 13 Gb/s, this state occurs roughly after 0.3 s (at slower bit rates,
this occurs later). This error has a higher priority than “no unique
48bits”.

• BURST_RESULT_STATE__NO_UNIQUE_48BITS_FOUND

For reliable synchronization, a pattern must contain a unique 48-bit
pattern (the detect word). If the current pattern does not have a
detect word, this error occurs.

If this status occurs, the synchronization may be incorrect, as could
also the measured bit error rate. There are standard patterns that
may contain more than one instance of the used detect word.
Statistically, every other burst would be correctly synchronized.

In this case, it is recommended that you redefine the pattern. This
error can only occur with memory-based patterns.

• BURST_RESULT_STATE__UNKNOWN

The status is unknown. This can occur if accumulation has not been
started, or if Burst Sync mode has not been activated.

NOTE Please note that the responses each have two underscores after
STATE.
Agilent Serial BERT, Programming Guide, May 2004 161

SCPI Command Reference [P]FETCh Subsystem
[P]FETCh[:SENSe[1]]:ECOunt Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL][:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorCount.Read (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL][:TOTal]?

Description This query is a contraction of the phrase Error COUnt. It is the
number of errors received in a time interval.

[P]FETCh

[:SENSe[1]]

:ECOunt

[:ALL]

[:FULL]

[:TOTal]?

:DELTa?

:OASZero

[TOTal]?

:ZASone

[:TOTal]?

Name Description under

:ECOunt[:ALL][:FULL][:TOTal]? “[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL][:T
OTal]?” on page 162

:ECOunt[:ALL][:FULL]:DELTa? “[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL]:D
ELTa?” on page 163

:ECOunt:OASZero[:TOTal]? “[P]FETCh[:SENSe[1]]:ECOunt:OASZero[:TOTa
l]?” on page 163

:ECOunt:ZASone[:TOTal]? “[P]FETCh[:SENSe[1]]:ECOunt:ZASone[:TOTal
]?” on page 163
162 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL]:DELTa?

IVI-COM Equivalent IAgilentN490xEDErrorCount.ReadDelta (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL]:DELTa?

Description The “instantaneous” number of errors, calculated from the counts
obtained in the last decisecond. This value is available even when
accumulation is turned off.

[P]FETCh[:SENSe[1]]:ECOunt:OASZero[:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorCount.ReadOAZ (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ECOunt:OASZero[:TOTal]?

Description This is a contraction of the phrase One received AS Zero. The
command returns the number of errored ones (each true data one that
is received as a data zero).

[P]FETCh[:SENSe[1]]:ECOunt:ZASone[:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorCount.ReadZAO (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ECOunt:ZASone[:TOTal]?

Description This is a contraction of the phrase Zero received AS one. The
command returns the number of errored zeros (each true data zero
that is received as a data one).

[P]FETCh[:SENSe[1]]:EFINterval Subnode

This subnode has the following SCPI structure:

[P]FETCh

[:SENSe[1]]

:EFINterval

:SEConds?

:DSEConds?

:CSEConds?

:MSEConds?
Agilent Serial BERT, Programming Guide, May 2004 163

SCPI Command Reference [P]FETCh Subsystem
This subnode has the following commands:

[P]FETCh[:SENSe[1]]:EFINterval:SEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErrorFreeSeconds (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:EFINterval:SEConds?

Description This query is a contraction of the phrase Error-Free INterval and
returns a count of the number of seconds during which no error was
detected.

[P]FETCh[:SENSe[1]]:EFINterval:DSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErrorFreeDeciSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EFINterval:DSEConds?

Description This query is a contraction of the phrase Error-Free INterval and
returns a count of the number of deciseconds during which no error
was detected.

[P]FETCh[:SENSe[1]]:EFINterval:CSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErrorFreeCentiSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EFINterval:CSEConds?

Description This query is a contraction of the phrase Error-Free INterval and
returns a count of the number of centiseconds during which no error
was detected.

Name Description under

:SEConds? “[P]FETCh[:SENSe[1]]:EFINterval:SEConds?”
on page 164

:DSEConds? “[P]FETCh[:SENSe[1]]:EFINterval:DSEConds?
” on page 164

:CSEConds? “[P]FETCh[:SENSe[1]]:EFINterval:CSEConds?
” on page 164

:MSEConds? “[P]FETCh[:SENSe[1]]:EFINterval:MSEConds?
” on page 165
164 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]]:EFINterval:MSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErrorFreeMilliSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EFINterval:MSEConds?

Description This query is a contraction of the phrase Error-Free INterval and
returns a count of the number of milliseconds during which no error
was detected.

[P]FETCh[:SENSe[1]]:EINTerval Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

[P]FETCh[:SENSe[1]]:EINTerval:SEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErroredSeconds (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:EINTerval:SEConds?

Description This query is a contraction of the phrase Errored INTerval and
returns a count of the number of seconds during which one or more
errors were detected.

[P]FETCh

[:SENSe[1]]

:EINTerval

:SEConds?

:DSEConds?

:CSEConds?

:MSEConds?

Name Description under

:SEConds? “[P]FETCh[:SENSe[1]]:EINTerval:SEConds?”
on page 165

:DSEConds? “[P]FETCh[:SENSe[1]]:EINTerval:DSEConds?”
on page 166

:CSEConds? “[P]FETCh[:SENSe[1]]:EINTerval:CSEConds?”
on page 166

:MSEConds? “[P]FETCh[:SENSe[1]]:EINTerval:MSEConds?”
on page 166
Agilent Serial BERT, Programming Guide, May 2004 165

SCPI Command Reference [P]FETCh Subsystem
[P]FETCh[:SENSe[1]]:EINTerval:DSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErroredDeciSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EINTerval:DSEConds?

Description This query is a contraction of the phrase Errored INTerval and
returns a count of the number of deciseconds during which one or
more errors were detected.

[P]FETCh[:SENSe[1]]:EINTerval:CSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErroredCentiSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EINTerval:CSEConds?

Description This query is a contraction of the phrase Errored INTerval and
returns a count of the number of centiseconds during which one or
more errors were detected.

[P]FETCh[:SENSe[1]]:EINTerval:MSEConds?

IVI-COM Equivalent IAgilentN490xEDIntervals.ReadErroredMilliSeconds (not IVI-
compliant)

Syntax [P]FETCh[:SENSe[1]]:EINTerval:MSEConds?

Description This query is a contraction of the phrase Errored INTerval and
returns a count of the number of milliseconds during which one or
more errors were detected.

[P]FETCh[:SENSe[1]]:ERATio Subnode

This subnode has the following SCPI structure:

[P]FETCh

[:SENSe[1]]

:ERATio

[:ALL][:FULL][:TOTal][?]

[:ALL][:FULL]:DELTa[?]

:OASZero[:TOTal][?]

:ZASones[:TOTal][?]
166 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
This subnode has the following commands:

[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL][:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorRatio.Read (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL][:TOTal]?

Description This query is a contraction of the phrase Error RATio. It is the ratio of
the number of errors to the number of bits received in the interval
specified by gate period.

[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL]:DELTa?

IVI-COM Equivalent IAgilentN490xEDErrorRatio.ReadDelta (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL]:DELTa?

Description This query returns the “instantaneous” error ratio calculated from the
counts obtained in the last decisecond. This value is available even
when accumulation is turned off.

[P]FETCh[:SENSe[1]]:ERATio:OASZero[:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorRatio.ReadOAZ (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ERATio:OASZero[:TOTal]?

Description This is a contraction of the phrase One received AS Zero. The query
returns the ratio of erred ones (a true data one received a data zero) to
number of bits.

Name Description under

[:ALL][:FULL][:TOTal][?] “[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL][:T
OTal]?” on page 167

[:ALL][:FULL]:DELTa[?] “[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL]:D
ELTa?” on page 167

:OASZero[:TOTal][?] “[P]FETCh[:SENSe[1]]:ERATio:OASZero[:TOTa
l]?” on page 167

:ZASone[:TOTal][?] “[P]FETCh[:SENSe[1]]:ERATio:ZASone[:TOTal]
?” on page 168
Agilent Serial BERT, Programming Guide, May 2004 167

SCPI Command Reference [P]FETCh Subsystem
[P]FETCh[:SENSe[1]]:ERATio:ZASone[:TOTal]?

IVI-COM Equivalent IAgilentN490xEDErrorRatio.ReadZAO (IVI-compliant)

Syntax [P]FETCh[:SENSe[1]]:ERATio:ZASone[:TOTal]?

Description This is a contraction of the phrase Zero received AS One. The query
returns the ratio of erred zeros (a true data zero received a data one)
to number of bits.

[P]FETCh[:SENSe[1]]:G821 Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

NO TE The following commands return a percentage of seconds that have
been classified according to the CCITT’s G.821 specification.

[P]FETCh

[:SENSe[1]]

:G821

:AVAilability?

:UNAVailability?

:SESeconds?

:DMINutes?

:ESEConds?

Name Description under

:AVAilability? “[P]FETCh[:SENSe[1]]:G821:AVAilability?” on
page 169

:UNAVailability? “[P]FETCh[:SENSe[1]]:G821:UNAVailability?”
on page 169

:SESeconds? “[P]FETCh[:SENSe[1]]:G821:SESeconds?” on
page 169

:DMINutes? “[P]FETCh[:SENSe[1]]:G821:DMINutes?” on
page 169

:ESEConds? “[P]FETCh[:SENSe[1]]:G821:ESEConds?” on
page 169
168 Agilent Serial BERT, Programming Guide, May 2004

[P]FETCh Subsystem SCPI Command Reference
[P]FETCh[:SENSe[1]]:G821:AVAilability?

Syntax [P]FETCh[:SENSe[1]]:G821:AVAilability?

Description Returns the G.821 availability.

[P]FETCh[:SENSe[1]]:G821:UNAVailability?

Syntax [P]FETCh[:SENSe[1]]:G821:UNAVailability?

Description Returns the G.821 unavailability.

[P]FETCh[:SENSe[1]]:G821:SESeconds?

Syntax [P]FETCh[:SENSe[1]]:G821:SESeconds?

Description Returns the G.821 severely errored seconds.

[P]FETCh[:SENSe[1]]:G821:DMINutes?

Syntax [P]FETCh[:SENSe[1]]:G821:DMINutes?

Description Returns the G.821 degraded minutes.

[P]FETCh[:SENSe[1]]:G821:ESEConds?

Syntax [P]FETCh[:SENSe[1]]:G821:ESEConds?

Description Returns the G.821 errored seconds.
Agilent Serial BERT, Programming Guide, May 2004 169

SCPI Command Reference STATus Subsystem
STATus Subsystem

The STATus Subsystem provides an interface to the instrument’s

Status Register. For information on how to work with the Status
register, see “Serial BERT Register Model” on page 25.

This subsystem has the following SCPI structure:

This subsystem has the following commands and subnodes:

STATus:PRESet

IVI-COM Equivalent IAgilentN490xStatus.Preset (not IVI-compliant)

Syntax STATus:PRESet

Description The PRESet command is an event that configures the SCPI and device-
dependent status data structures, such that the device-dependent
events are reported at a higher level through the mandatory part of
the status reporting structures.

STATus

:CLOSs

. . .

:OPERation

. . .

:PRESet

:QUEStionable

Name Description under

Commands

STATus:PRESet “STATus:PRESet” on page 170

Subnodes

STATus:CLOSs “CLOSs Subnode” on page 171

STATus:OPERation “STATus:OPERation Subnode” on page 173

STATus:QUEStionable “STATus:QUEStionable Subnode” on page 176
170 Agilent Serial BERT, Programming Guide, May 2004

STATus Subsystem SCPI Command Reference
The PRESet command affects only the enable register and the
transition filter registers for the SCPI mandated and device dependent
status data structures. PRESet does not affect either the “status byte”
or the “standard event status” as defined by IEEE 488.2. PRESet does
not clear any of the event registers. The *CLS command is used to
clear all event registers in the device status reporting mechanism.

From the device-dependent status data structures, the PRESet
command sets the enable register to all one’s and the transition filter
to recognize both positive and negative transitions. For the SCPI
mandatory status data structures, the PRESet command sets the
transition filter registers to recognize only positive transitions and
sets the enable register to zero.

CLOSs Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

STATus:CLOSs:CONDition

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:CLOSs:CONDition?

Description This query returns the contents of the condition register in the Clock
Loss Status Register. See “Clock Loss Register” on page 28 for the
layout of the Clock Loss register.

STATus

:CLOSs

:CONDition?

:ENABle[?]

[:EVENt]?

:NTRansition[?]

:PTRansition[?]

Name Description under

:CONDition “STATus:CLOSs:CONDition” on page 171

:ENABle[?] “STATus:CLOSs:ENABle[?]” on page 172

[:EVENt]? “STATus:CLOSs[:EVENt]?” on page 172

:NTRansition[?] “STATus:CLOSs:NTRansition[?]” on page 172

:PTRansition[?] “STATus:CLOSs:PTRansition[?]” on page 173
Agilent Serial BERT, Programming Guide, May 2004 171

SCPI Command Reference STATus Subsystem
STATus:CLOSs:ENABle[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:CLOSs:ENABle <Num.>

STATus:CLOSs:ENABle?

Description The command sets the enable mask in the Clock Loss Register, which
allows true conditions in the event register to be reported in the
summary bit. The query returns the weighted value of the bits that are
set in the enable register. See “Clock Loss Register” on page 28 for the
layout of the Clock Loss register.

STATus:CLOSs[:EVENt]?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:CLOSs[:EVENt]?

Description The bits in this register indicate pattern generator and error detector
clock loss. This query returns whether the pattern generator or error
detector has experienced the clock loss. See “Clock Loss Register” on
page 28 for the layout of the Clock Loss register.

STATus:CLOSs:NTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:CLOSs:NTRansition <Num.>

STATus:CLOSs:NTRansition?

Description This command sets the negative transition register state in the Clock
Loss Register. When a bit in this mask is set to “1”, negative (logic 1
changing to logic 0) transitions of this bit are allowed to pass. The
query returns the weighted value of the bits that are set to pass
negative transitions in the transition filter. See “Clock Loss Register”
on page 28 for the layout of the Clock Loss register.
172 Agilent Serial BERT, Programming Guide, May 2004

STATus Subsystem SCPI Command Reference
STATus:CLOSs:PTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:CLOSs:PTRansition <Num.>

STATus:CLOSs:PTRansition?

Description This command sets the positive transition register state in the Clock
Loss Register. When a bit in this mask is set to “1”, positive transitions
(logic 0 changing to logic 1) of this bit are allowed to pass. This is the
default setting of the instrument. The query returns the weighted
value of the bits that are set to pass positive transitions in the
transition filter. See “Clock Loss Register” on page 28 for the layout of
the Clock Loss register.

STATus:OPERation Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

STATus

:OPERation

:CONDition?

:ENABle[?]

[:EVENt]?

:NTRansition[?]

:PTRansition[?]

Name Description under

:CONDition? “STATus:OPERation:CONDition?” on page 174

:ENABle[?] “STATus:OPERation:ENABle[?]” on page 174

[:EVENt]? “STATus:OPERation[:EVENt]?” on page 174

:NTRansition[?] “STATus:OPERation:NTRansition[?]” on
page 175

:PTRansition[?] “STATus:OPERation:PTRansition[?]” on
page 175
Agilent Serial BERT, Programming Guide, May 2004 173

SCPI Command Reference STATus Subsystem
STATus:OPERation:CONDition?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:OPERation:CONDition?

Description This query only returns the contents of the condition register in the
Operation Status Register. See “Operation Status Register” on
page 30 for the layout of the Operation Status register.

STATus:OPERation:ENABle[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:OPERation:ENABle

STATus:OPERation:ENABle?

Description The command sets the enable mask in the Operation Status Register,
which allows true conditions in the event register to be reported in the
summary bit. The query returns the weighted value of the bits that are
set in the enable register. See “Operation Status Register” on page 30
for the layout of the Operation Status register.

STATus:OPERation[:EVENt]?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:OPERation[:EVENt]?

Description This query returns the contents of the Operation Status event register.
See “Operation Status Register” on page 30 for the layout of the
Operation Status register.
174 Agilent Serial BERT, Programming Guide, May 2004

STATus Subsystem SCPI Command Reference
STATus:OPERation:NTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:OPERation:NTRansition

STATus:OPERation:NTRansition?

Description This command sets the transition filter state in the Operation Status
Register. When this mask is set to “1”, negative (logic 1 changing to
logic 0) transitions are allowed to pass. The query returns the
weighted value of the bits that are set to pass negative transitions in
the transition filter. See “Operation Status Register” on page 30 for
the layout of the Operation Status register.

STATus:OPERation:PTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:OPERation:PTRansition

STATus:OPERation:PTRansition?

Description This command sets the transition filter state in the Operation Status
Register. When this mask is set to “1”, positive transitions (logic 0
changing to logic 1) are allowed to pass. This is the default setting of
the instrument. The query returns the weighted value of the bits that
are set to pass positive transitions in the transition filter. See
“Operation Status Register” on page 30 for the layout of the
Operation Status register.
Agilent Serial BERT, Programming Guide, May 2004 175

SCPI Command Reference STATus Subsystem
STATus:QUEStionable Subnode

This subnode has the following SCPI structure:

This subnode has the following commands:

STATus:QUEStionable:CONDition?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:QUEStionable:CONDition?

Description This query returns the contents of the condition register in the
Questionable Status Register. See “Questionable Status Register” on
page 29 for the layout of the Questionable Status register.

STATus

:QUEStionable

:CONDition?

:ENABle[?]

[:EVENt]?

:NTRansition[?]

:PTRansition[?]

Name Description under

:CONDition? “STATus:QUEStionable:CONDition?” on
page 176

:ENABle[?] “STATus:QUEStionable:ENABle[?]” on
page 177

[:EVENt]? “STATus:QUEStionable[:EVENt]?” on
page 177

:NTRansition[?] “STATus:QUEStionable:NTRansition[?]” on
page 177

:PTRansition[?] “STATus:QUEStionable:PTRansition[?]” on
page 178
176 Agilent Serial BERT, Programming Guide, May 2004

STATus Subsystem SCPI Command Reference
STATus:QUEStionable:ENABle[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle?

Description The command form sets the enable mask in the Questionable Status
Register, which allows true conditions in the event register to be
reported in the summary bit. The query form returns the weighted
value of the bits that are set in the enable register. See “Questionable
Status Register” on page 29 for the layout of the Questionable Status
register.

STATus:QUEStionable[:EVENt]?

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:QUEStionable[:EVENt]

STATus:QUEStionable:ENABle?

Description This query form returns the contents of the Questionable Status event
register. See “Questionable Status Register” on page 29 for the layout
of the Questionable Status register.

STATus:QUEStionable:NTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition?

Description This command sets the transition filter state in the Questionable
Status Register. When this mask is set to “1”, negative (logic 1 changing
to logic 0) transitions are allowed to pass. The query form returns the
weighted value of the bits that are set to pass negative transitions in
the transition filter. See“Questionable Status Register” on page 29 for
the layout of the Questionable Status register.
Agilent Serial BERT, Programming Guide, May 2004 177

SCPI Command Reference SYSTem Subsystem
STATus:QUEStionable:PTRansition[?]

IVI-COM Equivalent IAgilentN490xStatus.Register (not IVI-compliant)

Syntax STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition?

Description This command sets the transition filter state in the Questionable
Status Register. When this mask is set to “1”, positive transitions (logic
0 changing to logic 1) are allowed to pass. This is the default setting of
the instrument. The query returns the weighted value of the bits that
are set to pass positive transitions in the transition filter. See
“Questionable Status Register” on page 29 for the layout of the
Questionable Status register.

SYSTem Subsystem

The SYSTem subsystem represents general system functions.

The subsystem has the following SCPI structure:

SYSTem

:BEEPer

:MODE[?]

:STATe

:THReshold[?]

:VOLume[?]

:ERRor

[:NEXT]?

:GPIB[?]

:HEADers?

:PTHRough[?]

:VERSion?

:HELP
178 Agilent Serial BERT, Programming Guide, May 2004

SYSTem Subsystem SCPI Command Reference
This subsystem has the following commands:

SYSTem:BEEPer:MODe[?]

IVI-COM Equivalent IAgilentN490xAudio.Mode (not IVI-compliant)

Syntax SYSTem:BEEPer:MODE BERalarm | TONes

SYSTem:BEEPer:MODE?

Description The command form sets the instrument’s audible beeper to trigger on
either a specific BER level (BERalarm) or on any occurrence of errors
(TONes).

The response returns the current mode setting of the instrument’s
audible beeper.

SYSTem:BEEPer:STATe[?]

IVI-COM Equivalent IAgilentN490xAudio.Enabled (not IVI-compliant)

Syntax SYSTem:BEEPer:STATe 0 | 1 | OFF | ON

SYSTem:BEEPer:STATe?

Description The command turns on and off the instrument’s audible beeper. The
response returns whether or not the instrument’s audible beeper is
turned on.

Name Description under

:BEEPer:MODe[?] “SYSTem:BEEPer:MODe[?]” on page 179

:BEEPer:STATe “SYSTem:BEEPer:STATe[?]” on page 179

:BEEPer:THReshold[?] “SYSTem:BEEPer:THReshold[?]” on page 180

:BEEPer:VOLume[?] “SYSTem:BEEPer:VOLume[?]” on page 180

:ERRor[:NEXT]? “SYSTem:ERRor[:NEXT]?” on page 180

:GPIB[?]

:HELP:HEADers? “SYSTem:HELP:HEADers?” on page 181

:VERSion? “SYSTem:VERSion?” on page 181
Agilent Serial BERT, Programming Guide, May 2004 179

SCPI Command Reference SYSTem Subsystem
SYSTem:BEEPer:THReshold[?]

IVI-COM Equivalent IAgilentN490xAudio.Threshold (not IVI-compliant)

Syntax SYSTem:BEEPer:THReshold <Numeric value>

SYSTem:BEEPer:THREshold?

Description The command sets the BER threshold value at which the instrument’s
audible beeper will produce sounds.

The response returns the current setting of the BER threshold at
which the instrument’s audible beeper will produce sounds.

SYSTem:BEEPer:VOLume[?]

IVI-COM Equivalent IAgilentN490xAudio.Volume (not IVI-compliant)

Syntax SYSTem:BEEPer:VOLume <Numeric value>

SYSTem:BEEPer:VOLume?

The command controls the volume of the instrument’s audible beeper.
The response returns the current volume of the instrument’s audible
beeper.

SYSTem:ERRor[:NEXT]?

IVI-COM Equivalent IIviDriverOperation.GetNextInterchangeWarning (IVI-compliant)

Syntax SYSTem:ERRor[:NEXT]?

Description This query pulls the next error from the error queue, and returns the
error number and a string describing the error. The error queue has a
depth of 20.

SYSTem:GPIB[?]

IVI-COM Equivalent IAgilentN490xUtilities.GPIBAddress (not IVI-compliant)

Syntax SYSTem:GPIB <Numeric value>

SYSTem:GPIB?

Description Sets or returns the instrument’s GPIB address.
180 Agilent Serial BERT, Programming Guide, May 2004

TEST Subsystem SCPI Command Reference
SYSTem:HELP:HEADers?

Syntax SYSTem:HELP:HEADers?

Description This query returns the complete list of instrument commands. Not all
of the commands are implemented, however. For more information,
refer to the specific command groups in this guide.

SYSTem:VERSion?

Syntax SYSTem:VERSion?

Description This query returns the version of the SCPI programming language,
which supports the GPIB commands.

TEST Subsystem

The TEST Subsystem represents the instrument’s selftest functions.

TEST:EXECute?

IVI-COM Equivalent IIviDriverUtility.SelfTest (IVI-compliant)

Syntax TEST:EXECute? [SelfTest_value] {,<SelfTest_value>}

Description This command runs user-specified self tests. If no parameter is
specifed, all tests are run.

Successful completion of a self test returns 0. If a self test fails, 1 is
returned.

TEST

:EXECute?

:MESSages?
Agilent Serial BERT, Programming Guide, May 2004 181

SCPI Command Reference TEST Subsystem
SelfTest_value can be one of the parameters listed below.

NO TE Use TEST:MESS? to read the result of the self tests.

TEST:MESSages?

IVI-COM Equivalent IIviDriverUtility.ErrorQuery (IVI-compliant)

Syntax TEST:MESSages? PGPOn | EDPOn | EDET | PGEN

Description Returns a comma-separated list of messages. This command has the
following options:

• PGPOn: Pattern Generator Power On messages

• EDPOn: Error Detector Power On messages

• PGEN: Pattern Generator selftest messages

• EDET: Error Detector selftest messages

• PGCal: Pattern Generator Calibration Results

• EDCal: Error Detector Calibration Results.

Parameter Description

ALL Error detector and pulse generator
module self test is started.

PGENerator Pulse generator module self test is
started.

EDETector Error detector module self test is
started.

PGCal Auto calibration of pulse generator
delay.

EDCal Auto calibration of error detector
delay.
182 Agilent Serial BERT, Programming Guide, May 2004

Appendix

This chapter discusses the differences between the Serial BERT and

its precursors (the Agilent 71612C and 86130A) from the
programmer’s point of view. The information here is intended to help
the programmer who is porting test applications that have been
developed for these other products.

General Differences
The Serial BERT differs from both the Agilent 71612C and 86130A in
the following points:

Added features The following features have been added:

• Delay Control Input port and subsystem

• Clock Data Recovery (CDR) mode

• Output blanking

• Additional trigger dividers for the pattern generator and error
detector

Modified functionality The following functions have been modified:

• Error messages are completely different.

• Logging is handled differently.

• Status registers have been reorganized.

• Selftests have been modified.

• Termination voltage can now be set variably.

• Additional logic families are supported.

• The frequency range has been extended in both directions.

• Patterns up to 32 Mbits long are possible.
Agilent Serial BERT, Programming Guide, May 2004 183

Appendix
Features no longer supported The following features are no longer supported:

• Enabling and disabling of the output and input ports

• The MMEMory subsystem

• Clock In polarity for the error detector

• Stretched mode at the Error Out port

• Open box?

Differences Specific to the Agilent 86130A

Added features The following features have been added:

• Bit Error Location; you can specify a single bit or an entire block for
error analysis.

• Zero substitution for PRBN patterns

• Further subsets of deci-second error intervals (milli- and centi-
seconds)

• G821 error interval measurements

Features no longer supported The following features are no longer supported:

• Separate levels for the CLOCK/CLOCK and DATA/DATA outputs.

• Quick alignment is no longer supported.

Differences Specific to the Agilent 71612C

Added features The following features have been added:

• Additional internal alternate pattern modes.

• User files are supported.
184 Agilent Serial BERT, Programming Guide, May 2004

Index
Index

A

Aux Out 113

C

Clock In
Error Detector (INPut2) 148
Error Detector (SENSe2) 149
Pattern Generator 108

Clock Out
Pattern Generator (OUTPut 2) 100
Pattern Generator (SOURce2) 97
Pattern Generator (SOURce9) 96

D

Data In
INPut[1] 110
SENSe[1] 113

Data Out
OUTPut[1] 93
SOURce[1] 70

E

Error Detector
Aux Out commands 113
Clock In commands (INPut2) 148
Clock In commands (SENSe2) 149
Data In commands (INPut[1]) 110
Data In commands (SENSe[1]) 113
Query commands 155
Trigger Out 154

F

FETCh 155

I

IEEE commands
mandatory 63
optional 68

INPut[1] 110

INPut2 148

Interrupts 38

O

Operation Modes 11

OUTPut[1] 93

OUTPut2 100

P

Pattern Generator
Clock In port 108
Clock Out (volt) commands 100
Clock Out commands (SOURce2) 97
Clock Out commands (SOURce9) 96
Data Out commands (OUTPut[1]) 93
Data Out commands (SOURce[1]) 70
Trigger Out commands 103

[P]FETCh 155

Programming
Data Types 53

R

Register Model 25

Remote Control
Communication 8
Connections 9

S

SCPI Commands 51
Separators 56
Syntax 55

SENSe[1] 113

SENSe2 149

SENSe6 108

SOURce[1] 70

SOURce2 97

SOURce3 103

SOURce7 154

SOURce9 96

T

Trigger Out
Error Detector 154
Pattern Generator 103
Agilent Serial BERT, Programming Guide, May 2004 185

S1

Copyright Agilent Technologies 2004
Printed in Germany May 2004

5989-0386EN

	Contents
	Programming Basics
	Before You Begin
	Communication Overview
	Connecting to the Serial BERT

	Instrument Behavior
	Overheat Protection
	Operation Modes

	A Typical Serial BERT Program
	Prerequisites
	Initializing the Connection to the Serial BERT
	Initializing the Connection – Procedures

	Working with the IVI-COM Objects
	Working with the IVI-COM Objects – Procedures

	Changing Instrument Parameters
	Change the Pattern Generator’s Clock Rate and Output Voltages
	Trigger Synchronization
	Set Up a Pattern

	Recommended Programming Techniques
	Controlling the Output Levels
	How Serial BERT Controls the Output Levels

	Allowing Serial BERT to Settle
	How Pattern Changes Affect the Pattern Generator
	How Pattern Changes Affect the Error Detector
	Determining if Conditions have Settled
	Checking the Settling with IVI-COM
	Checking the Settling with SCPI

	Reading the Serial BERT’s Status
	How Serial BERT Uses Status Registers
	Overview of the Serial BERT’s Status System
	Serial BERT’s Status System Structure
	Status Register Group Model

	Serial BERT Register Model
	Status Byte
	Standard Event Status Register
	Clock Loss Register
	Questionable Status Register
	Operation Status Register

	Using Error Location Capture
	Restrictions for Error Location Capture
	How to Run Error Location Capture
	How to Abort Error Location Capture
	How to See if Error Location Capture is Running
	Understanding the Status
	Handling the Results
	How to Handle Run Errors
	Using Error Location Capture – Procedures
	Running ELOC in IVI-COM
	Running ELOC in SCPI

	Using Interrupts
	Using Interrupts – Procedures
	Using Interrupts with SCPI

	Working With User Patterns
	Techniques for Editing User Patterns
	How the Serial BERT Uses Alternate Patterns
	How Serial BERT Sends Triggers
	Working With User Patterns – Procedures
	Working with User Patterns in IVI-COM
	Working with User Patterns in SCPI
	Examples for Using User Patterns in SCPI

	SCPI Command Language
	SCPI Common Commands
	SCPI Instrument Control Commands
	IEEE 488.2 Mandatory and Optional Commands
	Overlapped and Sequential Commands
	Data Types
	Important Points about SCPI
	Instrument Model
	Command Syntax
	Optional Command Keywords
	Sending Commands
	Querying Responses
	Command Separators
	SCPI Command Structure Example

	Sending Commands to the Serial�BERT
	Sending Commands using VISA

	SCPI Command Reference
	Serial BERT Subsystems
	IEEE Commands
	Mandatory Commands
	*CLS
	*ESE[?]
	*ESR?
	*IDN?
	*OPC
	*OPC?
	*RST
	*SRE[?]
	*STB?
	*TST?
	*WAI

	Optional Commands
	*OPT?
	*PSC
	*RCL
	*SAV

	SOURce[1] Subsystem
	[SOURce[1]]:PM[:STATe][?]
	[SOURce[1]]:PATTern Subnode
	[SOURce[1]]:PATTern:EADDition[?]
	[SOURce[1]]:PATTern:EADDition:RATE[?]
	[SOURce[1]]:PATTern:EADDition:SOURce[?]
	[SOURce[1]]:PATTern:FORMat[:DATA][?]
	[SOURce[1]]:PATTern:MDENsity[:DENSity][?]
	[SOURce[1]]:PATTern[:SELect][?]
	[SOURce[1]]:PATTern:ZSUBstitut[:ZRUN][?]

	[SOURce[1]]:PATTern:APCHange Subnode
	[SOURce[1]]:PATTern:APCHange:IBHalf
	[SOURce[1]]:PATTern:APCHange:MODE[?]
	[SOURce[1]]:PATTern:APCHange:SELect[?]
	[SOURce[1]]:PATTern:APCHange:SOURce[?]

	[SOURce[1]]:PATTern:UFILe Subnode
	[SOURce[1]]:PATTern:UFILe:DATA[?]
	[SOURce[1]]:PATTern:UFILe:IDATa
	[SOURce[1]]:PATTern:UFILe[:LENGth][?]
	[SOURce[1]]:PATTern:UFILe:LABel[?]
	[SOURce[1]]:PATTern:UFILe:NAME?
	[SOURce[1]]:PATTern:UFILe:USE[?]

	[SOURce[1]]:PATTern:UPATTern Subnode
	[SOURce[1]]:PATTern:UPATtern<n>[:LENGth][?]
	[SOURce[1]]:PATTern:UPATtern<n>:LABel[?]
	[SOURce[1]]:PATTern:UPATtern<n>:USE[?]
	[SOURce[1]]:PATTern:UPATtern<n>:DATA[?]
	[SOURce[1]]:PATTern:UPATtern<n>:IDATa[?]

	[SOURce[1]]:VOLTage Subnode
	[SOURce[1]]:VOLTage:ECL
	[SOURce[1]]:VOLTage[:LEVel][:IMMediate][:AMPLitude] [?]
	[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:HIGH[?]
	[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:LOW[?]
	[SOURce[1]]:VOLTage[:LEVel][:IMMediate]:OFFSet[?]
	[SOURce[1]]:VOLTage[:LEVel]:LLEVel[?]

	OUTPut[1] Subsystem
	OUTPut[1]:CENTer
	OUTPut[1]:COUPling
	OUTPut[1]:DATA:XOVer[?]
	OUTPut[1]:DELay[?]
	OUTPut[1]:POLarity[?]
	OUTPut[1][:STATe][?]
	OUTPut[1]:TERMination[?]

	SOURce9 Subsystem
	SOURce9:FREQuency[:CW|FIXed][?]

	SOURce2 Subsystem
	SOURce2:FREQuency[:CW|:FIXed]?
	SOURce2:VOLTage:ECL
	SOURce2:VOLTage[:LEVel][:IMMediate][:AMPLitude][?]
	SOURce2:VOLTage[:LEVel][:IMMediate]:HIGH[?]
	SOURce2:VOLTage[:LEVel][:IMMediate]:LOW[?]
	SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet[?]
	SOURce2:VOLTage:LLEVel[?]

	OUTPut2 Subsystem
	OUTPut2:CENTer
	OUTPut2:COUPling[?]
	OUTPut2[:STATe][?]
	OUTPut2:TERMination[?]

	SOURce3 Subsystem
	SOURce3:TRIGger[:MODe][?]
	SOURce3:TRIGger:DCDRatio
	SOURce3:TRIGger:CTDRatio?
	SOURce3:TRIGger:APATtern<n>[?]
	SOURce3:TRIGger:MDENsity<n>[?]
	SOURce3:TRIGger:ZSUBstitut<n>[?]
	SOURce3:TRIGger:PRBN<n>[?]
	SOURce3:TRIGger:PRBS<n>[?]
	SOURce3:TRIGger:UPATtern<n>

	SENSe6 Subsystem
	SENSe6:FREQuency[:CW|:FIXed]?
	SENSe6:MODe

	INPut[1] Subsystem
	INPut[1]:COUPling[?]
	INPut[1]:DELay[?]
	INPut[1]:POLarity[?]
	INPut[1]:TERMination[?]
	INPut[1]:STATe[?]
	INPut[1]:CMODe[?]

	SENSe[1] Subsystem
	SENSe[1]:LOGGing[?]
	SENSe[1]:LOGGing:FILename[?]
	SENSe[1]:SYNChronizat[?]
	SENSe[1]:SYNChronization:THReshold[?]
	SENSe[1]:FREQuency[:CW|:FIXed][?]
	SENSe[1]:AUXout:MODe[?]
	SENSe[1]:BLOCk Subnode
	SENSe[1]:BLOCk[?]
	SENSe[1]:BLOCk:BSTart[?]
	SENSe[1]:BLOCk:BLENgth[?]

	SENSe[1]:ELOCation Subnode
	SENSe[1]:ELOCation[?]
	SENSe[1]:ELOCation:BEADdress[?]
	SENSe[1]:ELOCation:VERBose?
	SENSe[1]:ELOCation:ECOunt?

	SENSe[1]:EYE Subnode
	SENSe[1]:EYE:ACENter[?]
	SENSe[1]:EYE:ALIGN:AUTo[?]
	SENSe[1]:EYE:ALIGN:AUTo:MESSage?
	SENSe[1]:EYE:HEIGht?
	SENSe[1]:EYE:QUICk:ALIGn:AUTo?
	SENSe[1]:EYE:QUICk:ACENter[?]
	SENSe[1]:EYE:QUICk:TCENter[?]
	SENSe[1]:EYE:TCENter[?]
	SENSe[1]:EYE:THReshold[?]
	SENSe[1]:EYE:WIDTh?

	SENSe[1]:GATE Subnode
	SENSe[1]:GATE:BURSt[?]
	SENSe[1]:GATE:MANNer[?]
	SENSe[1]:GATE:MODe[?]
	SENSe[1]:GATE:PERiod:BITS[?]
	SENSe[1]:GATE:PERiod:ERRors[?]
	SENSe[1]:GATE:PERiod[:TIMe][?]
	SENSe[1]:GATE[:STATe][?]

	SENSe[1]:PATTern Subnode
	SENSe[1]:PATTern:FORMat[:DATa][?]
	SENSe[1]:PATTern:MDENsity[:DENSity][?]
	SENSe[1]:PATTern[:SELect][?]
	SENSe[1]:PATTern:TRACk[?]
	SENSe[1]:PATTern:ZSUBstitut[:ZRUN][?]

	SENSe[1]:PATTern:UPATtern Subnode
	SENSe[1]:PATTern:UPATtern<n>:DATA[?]
	SENSe[1]:PATTern:UPATtern<n>:IDATa[?]
	SENSe[1]:PATTern:UPATtern<n>[:LENGth][?]
	SENSe[1]:PATTern:UPATtern<n>:LABel[?]
	SENSe[1]:PATTern:UPATtern<n>:USE[?]

	SENSe[1]:PATTern:UFILe Subnode
	SENSe[1]:PATTern:UFILe[:LENGth][?]
	SENSe[1]:PATTern:UFILe:LABel[?]
	SENSe[1]:PATTern:UFILe:USE[?]
	SENSe[1]:PATTern:UFILe:DATa[?]
	SENSe[1]:PATTern:UFILe:IDATa[?]
	SENSe[1]:PATTern:UFILe:NAMe[?]

	SENSe[1]:VOLTage Subnode
	SENSe[1]:VOLTage:ZOTHreshold[?]
	SENSe[1]:VOLTage:ZOTHreshold:RANGe[:HIGH][?]
	SENSe[1]:VOLTage:ZOTHreshold:RANGe:LOW[?]
	SENSe[1]:VOLTage:ZOTHreshold:AUTo[?]

	INPut2 Subsystem
	INPut2:TERMination[?]
	INPut2:COUPling[?]

	SENSe2 Subsystem
	SENSe2:FREQuency[:CW|:FIXed]?
	SENSe2:FREQuency:CDR[?]
	SENSe2:FREQuency:CDR:RANGe?
	SENSe2:FREQuency:CDR:AUTo[?]
	SENSe2:FREQuency:CDR:THReshold[:VALue][?]
	SENSe2:FREQuency:CDR:THReshold:MEASure[?]
	SENSe2:VOLTage:EDGe[?]

	SOURce7 Subsystem
	SOURce7:TRIGger[:MODe][?]
	SOURce7:TRIGger:DCDRatio
	SOURce7:TRIGger:CTDRatio?

	[P]FETCh Subsystem
	[P]FETCh:SENSe2:BCOunt?
	[P]FETCh:SENSe2:FREQuency[:CW|:FIXed]?
	[P]FETCh[:SENSe[1]] Subnode
	[P]FETCh[:SENSe[1]]:GATe:ELAPsed?
	[P]FETCh[:SENSe[1]]:LOSS:POWer?
	[P]FETCh[:SENSe[1]]:LOSS:SYNChronizat?

	[P]FETCh[:SENSe[1]]:BURSt Subnode
	[P]FETCh[:SENSe[1]]:BURSt:BCOunt?
	[P]FETCh[:SENSe[1]]:BURSt:DCYCle?
	[P]FETCh[:SENSe[1]]:BURSt:SRATio?
	[P]FETCh[:SENSe[1]]:BURSt:TCOunt?
	[P]FETCh[:SENSe[1]]:BURSt:STATe?

	[P]FETCh[:SENSe[1]]:ECOunt Subnode
	[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL][:TOTal]?
	[P]FETCh[:SENSe[1]]:ECOunt[:ALL][:FULL]:DELTa?
	[P]FETCh[:SENSe[1]]:ECOunt:OASZero[:TOTal]?
	[P]FETCh[:SENSe[1]]:ECOunt:ZASone[:TOTal]?

	[P]FETCh[:SENSe[1]]:EFINterval Subnode
	[P]FETCh[:SENSe[1]]:EFINterval:SEConds?
	[P]FETCh[:SENSe[1]]:EFINterval:DSEConds?
	[P]FETCh[:SENSe[1]]:EFINterval:CSEConds?
	[P]FETCh[:SENSe[1]]:EFINterval:MSEConds?

	[P]FETCh[:SENSe[1]]:EINTerval Subnode
	[P]FETCh[:SENSe[1]]:EINTerval:SEConds?
	[P]FETCh[:SENSe[1]]:EINTerval:DSEConds?
	[P]FETCh[:SENSe[1]]:EINTerval:CSEConds?
	[P]FETCh[:SENSe[1]]:EINTerval:MSEConds?

	[P]FETCh[:SENSe[1]]:ERATio Subnode
	[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL][:TOTal]?
	[P]FETCh[:SENSe[1]]:ERATio[:ALL][:FULL]:DELTa?
	[P]FETCh[:SENSe[1]]:ERATio:OASZero[:TOTal]?
	[P]FETCh[:SENSe[1]]:ERATio:ZASone[:TOTal]?

	[P]FETCh[:SENSe[1]]:G821 Subnode
	[P]FETCh[:SENSe[1]]:G821:AVAilability?
	[P]FETCh[:SENSe[1]]:G821:UNAVailability?
	[P]FETCh[:SENSe[1]]:G821:SESeconds?
	[P]FETCh[:SENSe[1]]:G821:DMINutes?
	[P]FETCh[:SENSe[1]]:G821:ESEConds?

	STATus Subsystem
	STATus:PRESet
	CLOSs Subnode
	STATus:CLOSs:CONDition
	STATus:CLOSs:ENABle[?]
	STATus:CLOSs[:EVENt]?
	STATus:CLOSs:NTRansition[?]
	STATus:CLOSs:PTRansition[?]

	STATus:OPERation Subnode
	STATus:OPERation:CONDition?
	STATus:OPERation:ENABle[?]
	STATus:OPERation[:EVENt]?
	STATus:OPERation:NTRansition[?]
	STATus:OPERation:PTRansition[?]

	STATus:QUEStionable Subnode
	STATus:QUEStionable:CONDition?
	STATus:QUEStionable:ENABle[?]
	STATus:QUEStionable[:EVENt]?
	STATus:QUEStionable:NTRansition[?]
	STATus:QUEStionable:PTRansition[?]

	SYSTem Subsystem
	SYSTem:BEEPer:MODe[?]
	SYSTem:BEEPer:STATe[?]
	SYSTem:BEEPer:THReshold[?]
	SYSTem:BEEPer:VOLume[?]
	SYSTem:ERRor[:NEXT]?
	SYSTem:GPIB[?]
	SYSTem:HELP:HEADers?
	SYSTem:VERSion?

	TEST Subsystem
	TEST:EXECute?
	TEST:MESSages?

	Appendix
	General Differences
	Differences Specific to the Agilent 86130A
	Differences Specific to the Agilent 71612C

	Index

